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EXECUTIVE SUMMARY 

The deliverable D3.3 “Evaluation of operation optimization” reports on the results of the trials performed 

in the three Living Labs of the 5G-LOGINNOV project, the evaluation of the use cases as well as the 

evaluation of the 5G technology exploited across the three pilots in various 5G facilities (Public 5G-NSA, 

Private 5G-NSA and Private 5G-SA).  

Particularly, the current report takes input from D1.4, D2.3, D3.1 and D3.2, and reports on the trials 

performed, the assessment of the performance of 5G technology, the assessment of application KPIs 

(Quantitative and Qualitative) and their impact in the logistics domain and the Port industry, within and 

outside a Port’s premises. Towards this direction, the methodology exploited per pilot/experiment/use 

case is briefly described and the relevant KPI metrics along with the collected data are presented 

accordingly. 

Special attention has been dedicated to cross-pilot activities to ensure that the developed technology, 

technology enablers, and use cases are not isolated innovations exclusive to a single logistics Living 

Lab (LL). Instead, they are designed for seamless transferability to other LLs and European ports. This 

particular aspect was also among the focal points of interest at the final demonstration event of the 5G-

LOGINNOV project that took place in LL Koper (Koper municipality, Slovenia) on the 7th of November, 

where the Project partners (among other activities) showcased how software and technologies exploited 

and developed at one site can be transferred to another, fostering potential interoperability of aforesaid 

services among many EU ports, logistics actors and the broader stakeholder community (c.f. Section 

5). 

In summary, the conclusion of the project's outcomes is presented alongside the well-defined objectives 

of the three pilots. The presentation also offers insights into the technology enablers and barriers, as 

well as the challenges encountered across different domains within the multi-stakeholder community of 

the 5G-LOGINNOV project. 

1 INTRODUCTION 

5G-LOGINNOV’s vision focused on enhancing/improving freight and traffic operations at Ports and 

Logistics hubs via innovative concepts, applications and devices supported by 5G technology, the IoT, 

AI-enabled data analytics, next generation traffic management systems, Cooperative, Connected and 

Automated Mobility (CCAM). The project’s scope with focus on large scale trials and pilots has been 

verified in real operating conditions in three Living Lab (LL) environments, namely, Athens (Greece), 

Hamburg (Germany) and Koper (Slovenia). While Athens and Koper LLs are focused on applications 

tailored to 5G and Smart Logistics within the Port premises, in Hamburg, the focus resides in hinterland, 

i.e., the interconnection of the Port with the road transport network and road infrastructure. In more 

detail, following the compute continuum paradigm various AI-service placement options have been 

considered (extreme-edge, edge and cloud) given the diverse set of requirements of the developed use 

cases (e.g., latency sensitive, or throughput intensive), creating a 5G ecosystem of cloud native 

interconnected Port assets (5G Trucks, 5G cranes, 5G Drones, 5G IoT). Details on the specific use 

cases and cross-pilot activities are thoroughly discussed in the remaining of the draft, promoting among 

others the interoperability of the developed use cases across the pilots of 5G-LOGINNOV ports. 

The main objectives of 5G-LOGINNOV can be summarized as follows; (i) the support of the “Green” 

Port Industry vision by reducing the hub’s operation emissions. Particularly, a 5G based Green Light 

Optimum Speed Advisory (GLOSA) system has been developed coupled with precise positioning 

technology and Mutli-access edge computing (MEC), for combined coordination of  vehicle platoon 

movements and traffic light infrastructure; (ii) enhance safety and security operations by developing a 

5G&AI enabled collision warning system between trucks and personnel, as well as mission-critical AI-
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assisted drone surveillance; (iii) improve the efficiency of logistics operations via 5G&AI enabled video 

analytics services related to port control, logistics and remote automation.  

The portfolio of 5G LOGINNOV use cases have been evaluated in various network deployment options, 

i.e., 5G-NSA private network (in Athens LL), public 5G-NSA network (Koper and Hamburg LLs), as well 

as private 5G SA network (Koper LL). 

Finally, the project fostered various market opportunities building on the ecosystem of 5G technologies 

in the logistics domain, thus being a pillar of economic development and business innovation and 

promoting local innovative high-tech SME and Start-Ups via the published/tendered Open-calls. 

Particularly, 5 SMEs have been accepted to the 5G-LOGINNOV consortium, to develop their solution 

on the respective LLs and are summarized below: 

• auTonomous dRones for marITime OperatioNs (TRITON) – Hellenic Drones, Koper LL. 

• Real timE drowSiness detectiON, AlerTing and rEporting (RESONATE) – Libra AI, Athens LL 

• 5G-Loginnov-4-Amazon (5G4A) – eShuttle, Hamburg LL 

• TAXi-AD Data (TAADD) – uze! Mobility GmbH, Hamburg LL 

• Intelligent Traffic Guidance System (ITGS) – Roads.AI, Hamburg LL 

 
Detailed evaluation of the project’s results for all pilot sites are described in the next chapters. 

1.1 Purpose of the deliverable  

The present deliverable (D3.3) reports on the innovations that occurred in the project's three LLs, the 

outcomes of the use cases and trials that were conducted for all pilot sites to enhance the identified 

daily port operations/needs, the evaluation of the use cases in relation to the project's goals, and the 

identification of any deviations from the planned activities and objectives of 5G-LOGINNOV. 

1.2 Intended audience 

The dissemination level of D3.3 is a ‘public’ (PU) deliverable and available to members of the 

consortium, the Commission Services and those external to the project. It is specifically aimed at 

providing the 5G-LOGINNOV consortium members with an extensive set of guidelines and tools that 

contribute to the project’s promotion and diffusion, as well as to provide to any interested party (e.g., 

Telecommunications Industry, Road/Port/Terminal/Logistics/Maritime Operators/Authorities, SMEs, 

Research Institutes and more) with the lessons learned and a deep view on the technology enablers 

and limitations, as well as the challenges faced across the various domains and collaborating parties, 

throughout the completion of this high TRL project results, with focus on large scale trials and pilots 

verified in real operating conditions in the three LL environments of the 5G-LOGINNOV project. 
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2 EVALUATION IN ATHENS LIVING LAB 

As part of the 5G-LOGINNOV project, the Athens LL developed a set of use cases and platforms which 

communicate over the private 5G NSA network with different types of end devices (5G-Trucks, 5G-

Cranes, 5G-IoT, 5G UEs). 5G technology enables the use case innovations exploiting the eMBB service 

and low latency transmissions of 5G, including NFV-MANO based applications and service 

orchestration, private cloud computing and far-edge computing innovative solutions, computer vision 

and AI-enabled video analytics. In brief, the use cases which are thoroughly evaluated in the following 

sections, are focused to 5G&AI enabled services tailored to safety/security applications as well as for 

improving the efficiency of daily port operations (reduce costs, improve the utilization of human 

resources and automate logistics services). Figure 1 depicts a high-level overview of the deployed 

private 5G-NSA network, the 5G-IoT platform supported by PCT’s private cloud infrastructure and 5G-

IoT devices within the port premises for supporting the project’s use cases. Briefly, the NSA core 

(Release 15) is shown below with various pools of MME, SGW-U and PGW-U core elements for 

redundancy and load balancing, as well as the private cloud infrastructure and 5G-IoT nodes deployed 

within the port premises, for the support of the various 5G&AI-enabled video analytics services. 

 

Figure 1: LL Athens - Private 5G network, Private Cloud and extreme-edge deployments for 5G-IoT 
nodes[a] 

2.1 5G Network Evaluation 

2.1.1 Network Deployment 

The following Figures depict the deployed 5G radio access network (based on the Huawei RRU 5639w) 

at Piraeus Port and mapping in the port area. Vodafone’s Core network operates outside the port 

premises, at Vodafone’s datacentre, directly connected via fiber with the radio units installed in the Port. 

Particularly PCT’s private 5G NSA network operates in band n78 at 3.7GHz with 100 MHz bandwidth, 

providing 5G connectivity to a subset of the port Piers (see following Figures), whereas the remaining 

port areas are fully covered via 4G.  For more details regarding PCT’s 5G network, please refer to [1]. 

Extensive evaluation of the network KPIs follow. 
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Figure 1b : LL Athens - deployed 5G radio access network at Piraeus Port and mapping in the port 
area 

 

2.1.2 List of Key Performance Indicators 

 

Table 1 describes the 5G network KPIs as defined in [2] (D1.4). 

KPI KPI ID Target Value Measured Value 

Area Traffic 
Capacity 

A-KPI19 
Downlink 1500 Mbps 

Uplink 120 Mbps 
Achieved* 

Bandwidth A-KPI20 
Specified by the max 
capacity of the RRU 

installed at PCT 

Achieved 

Connection 
Density 

A-KPI21 
Typically, up to 100 live 

sharing traffic - 1000 
max attached 

Achieved* 

Reliability A-KPI22 99.9 (average) Achieved 

End-to-End 
Latency 

A-KPI23 
<20ms (average) Achieved 

One-way Latency A-KPI24 <10ms (average) Achieved 

Table 1: LL Athens – KPIs list for the private 5G Network 

The total capacity of the 5G cell (A-KPI19) installed in PCT is shown in Figure 2, provided by Vodafone, 
and is measured at about 1.5Gbps i.e., the total load the gNB can handle, while detailed evaluation of 
the remote radio unit installed is explained in the following sections. Note that the backhaul capacity 
interconnecting the BBU and the datacentre of PCT where our management platform and cloud 
infrastructure is deployed is limited by 1G fiber optic network, hence specifying the bottleneck of total 
network throughput for our experimentation. 
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Figure 2: LL Athens - Total capacity of the 5G cell at PCT – (A-KPI19) 

 
Regarding A-KPI19 (Area Traffic Capacity) we exploit a single remote radio unit (RRU) installed in the 
PCT, i.e., 1x RRU (Huawei AAU5639W 5G) with total traffic throughput served at the geographic area 
depicted in Figure 5, and evaluated in detail in the next sections based on A-KPI20 (Bandwidth) 
measurements. 
 
With respect to A-KPI21 (Connection Density: total number of connected and/or accessible devices per 
unit area) we exploit a single RRU for the 5GLOGINNOV project to support all connected devices, hence 
based on the specifications of the device this is measured as 100 devices sharing traffic (fair scheduler) 
and 1000 (max) attached, as instructed by the provider. 

 

2.1.3 Methodology and Measurement Tools 

To facilitate the evaluation of the network KPIs we exploit a dual approach. We first exploit the 5G KPI 

monitoring software suite (i.e., qMON), provided by ININ. Detailed view on the test protocols exemplify 

how qMON is used, and is presented in [3]. Briefly, we exploit Samsung Galaxy S22 5G phone with 

qMON software (Figure 3) and a backend system for data collection. 

 

Figure 3: LL Athens - 5G KPIs monitoring system provided by ININ 

Particularly, the qMON agent installed on the phone communicates with two virtual machines at the 

backend system of PCT. The VMs include the database system, control plane functionalities and 

visualization tools (Grafana). Through qMON control agent we create work orders (see Figure 4), which 
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basically define continuous experiments for latency (ping) and throughput (iperf3 downlink/uplink) 

measurements (A-KPI20 and A-KPI23).  

 

Figure 4: LL Athens - 5G KPIs monitoring system work orders provided by ININ 

Via qMON we conducted several drive tests, where the 5G phone was inside a truck moving along the 

Port Piers, in order to establish a detailed map of network KPIs for supporting the 5G LOGINNOV use 

cases. Additionally, stationary tests where the phone was positioned at fixed locations within the Port 

premises were conducted. The following sections thoroughly present the accumulated results. 

Finally, we perform also extensive numerical evaluation for the network KPIs via the 5G-IoT nodes 

deployed at several locations (crane, truck, pillar) within the Port area, which compose the 5G-IoT 

system that hosts the cloud native AI services tailored to logistics and safety applications. The tests are 

conducted with legacy iperf3 and ping tools (not via qMON) from the 5G-IoT nodes. 

2.1.4 Results 

2.1.4.1 5G Drive Test Evaluation 

Figure 5 depicts the 5G drive test conducted within the Port of Piraeus in Piers II and III. The dots 
represent latency and throughput tests (downlink and uplink) as we drive within the Port premises. 
Relevant KPIs are A-KPI20 and A-KPI23. We conducted multiple trips following the routes depicted in 
Figure 5 where the green dots represent 5G connection and the blue ones correspond to LTE 
connectivity. The area of interest for the Athens LL experimentation and measurements is focused 
around the area with 5G connectivity (i.e., green dots) for all use cases. 

 

 
Figure 5: LL Athens - 5G drive test routes at Piers II and III, showcasing 5G and 4G coverage 

 
Figure 6, Figure 7 and  Figure 8 showcase the various measurements for downlink and uplink tests. We 
observe about 450Mbps in downlink and about 92Mbps in uplink for the mobile drive continuous 
monitoring tests. Figure 8 also depicts the changes between 4G and 5G. The drops in the observed 
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data rate for uplink and downlink measurements are the interruptions of the experiments due to 
handovers to the 4G network, and then re-establishment of the 5G session.  
 

 
Figure 6: LL Athens - 5G drive test downlink measurements – (A-KPI20) 

 

 
Figure 7: LL Athens - 5G drive test uplink measurements – (A-KPI20) 

 

 
Figure 8: LL Athens - 5G drive test downlink and uplink measurements in 1.5 hours driving – (A-KPI20) 

Next in Figure 9 we present the results from the latency (ping) measurements. The initially illustrated 
increased values are 4G measurements, before entering the Pier with 5G connectivity. As already noted 
since the software stack from ININ (qMON) is installed behind several firewalls at PCT’s datacentre, we 
observe a slight increase in the latency values. For instance, we observe an average latency close to 
20 ms, with minimum and maximum values around 18 and 40ms, respectively. In Section 2.1.4.2 we 
illustrate the relevant latency plots at the 5G-IoT nodes, not bound by the same firewall limitation. 
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Figure 9: LL Athens - 5G drive test latency (ping) measurements – (A-KPI23) 

Figure 10 depicts the 5G (@100Mhz) and 4G (@40Mhz) channel bandwidth utilization illustrating the 
handover occurrence during the drive test. Evidently, we use 5G data plane carriers only, i.e., 4G 
channel carries only control plane information when the UE is connected to the gNB. Finally, Figure 11 
encapsulates radio signal parameters (RSRP, RSRQ, SINR and RSSI) during the drive tests. 

 

 
Figure 10: LL Athens - 5G drive test showcasing 5G and 4G channel bandwidth utilization 

 

 
Figure 11: LL Athens - 5G drive test radio signal measurements (RSSI, SINR, RSRP, RSRQ) 

 

2.1.4.2 5G IoT System Evaluation 

In this section we illustrate PCT’s private 5G network capabilities for supporting the 5G-LOGINNOV use 
cases on the 5G-IoT system which corresponds to stationary IoT nodes mounted on quay side crane 
(QC) 31 and Pillar within the Port terminal (c.f. Sections 2.3 and 2.4). We first evaluate the 5G 
capabilities from the 5G-IoT nodes with legacy iperf3 and ping tools (relevant for A-KPI20 and A-KPI23). 
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Via this approach we also thoroughly benchmark the performance of the 5G IoT nodes and 5G modems 
(i.e., Robustel R5020 5G IoT Router and Teltonika’s Industrial IoT router RUTX50) exploited by the use 
cases. As this system is not bound by additional firewall rules (as in the case of qMON), we also 
showcase the difference e.g., in latency measurements compared to qMON. Additionally, qMON is also 
used as part of this set of experiments where we place the Samsung Galaxy S22 phone in a fixed 
location with minor mobility within Pier III, to increase the traffic load on the network. 
 
Particularly, the x-axis samples in Figure 12, Figure 13 and Figure 14 are average values (also showing 
min, max and median) for 10 minutes of continuous tests. In total from s1 to s12 we illustrate continuous 
measurements for 120 minutes of continuous network traffic. As illustrated in Figure 12, the average 
latency is about 16ms (in contrast to the 20ms average latency observed though qMON due the 
intermediate firewalls). For A-KPI24 (one-way latency) we refer to this KPI as half-RTT and can be 
calculated from Figure 12, on average, about 8ms. Similarly for the throughput measurements (Figure 
13 and Figure 14) we observe maximum values of about 540Mbps in downlink and around 135 in uplink, 
whereas the average respective values are close to 440 and 120Mbps. In the following sections (2.2, 
2.3 and 2.4) we will also showcase the data rate incurred by the 4K streams transmitted from trucks, 
cranes, and pillar nodes. 
 

 
Figure 12: LL Athens - 5G IoT test, latency 

(ping) measurements – (A-KPI23) 

 

 

Figure 13: LL Athens - 5G IoT test, uplink 
measurements – (A-KPI20) 

 
Figure 14: LL Athens - 5G IoT test, downlink 

measurements – (A-KPI20) 

Table 2: LL Athens - Latency and Throughput tests – (A-KPI20 and A-KPI23) 

Regarding A-KPI22 (Reliability), the following figures in Table 3 illustrate a subset  of the obtained results 
exploiting: the ping tool for sending network layer packets from the 5G-IoT node towards the cloud 
infrastructure (Figure 15); and UDP iperf3 which reports the lost datagrams for two traffic scenarios, i.e., 
typical voice call of about 100kbps data traffic (Figure 16), and the video data rate as experienced by 
the high definition cameras deployed in PCT with average data rate of about 10Mbps (Figure 17). 
Particularly, for the ping command the packet losses are measured via echo ICMP reply message 
timeouts (No answer yet), whereas for the case of UDP we compare the Lost/Total Datagrams sent. On 
average we observe above 99.9% on successful packets transmissions. Using a more robust coding 
and modulation scheme could improve the 5G air interface’ reliability. 
 

 
Figure 15: LL Athens - Ping tests for network 

reliability – (A-KPI22) 

 
Figure 16: LL Athens - iperf3 UDP 100kbps test 

for network reliability – (A-KPI22) 

 
Figure 17: LL Athens - iperf3 UDP 10Mbps test 

for network reliability – (A-KPI22) 

Table 3: LL Athens – Reliability test with various network tools in different configurations – (A-KPI22) 
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2.2 UC3: 5G&AI enabled collision warning system 

2.2.1 Description and Motivation 

Piraeus Container Terminal relies heavily on internal yard trucks for the horizontal movement of 

containers between stacking areas and loading/unloading areas for vessels and road/rail. Along the 

routes followed by the trucks within the Port area (about 2.5 square kilometres) for facilitating the daily 

port operations, personnel engaged in different Port activities might be in close proximity. Given the size 

of the truck (and carried cargo), potential blind spots from the perspective of the truck driver could cause 

an accident with severe consequences. Towards this direction UC3 is focused in providing a cloud 

native 5G&AI enabled collision warning service between trucks and people in proximity. The developed 

service utilizes video streams (from a high-resolution camera installed on the truck) transmitted over 5G 

(uplink) to PCT’s private cloud infrastructure, where the AI containerized service resides, and infers the 

presence of people in truck’s close proximity. In case of positive inference, rapid alerts are delivered to 

the truck driver to avoid the accident. The Figures [table 4a]below depict typical truck routes within the 

Port premises, within the range of the gNB. 

  

Table 4: LL Athens – typical truck routes within the Port premises and within the range of the gNB (a) 

 

2.2.2 Use Case Setup 

In Figure 18 we present the high-level architecture and software components of the use case, and Table  

depicts real installations on a yard truck and another vehicle exploited for the evaluation of the service 

in multiple routes within the Port premises. The system is customizable to deliver either a rapid alert by 

means of a small packet that triggers sound alerts for the driver, or by delivering via 5G downlink the 

inferenced/annotated video stream at the 5G tablet installed at the driver’s cabin (Table , left). The 

annotated video can be additionally delivered to PCT’s central monitoring platform for authorized 

supervision. 

  

Table 4: LL Athens - PCT truck and commodity vehicle equipped with 5G interface and high definition 
cameras with a gimbal to absorb vibrations (b) 
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Figure 18: LL Athens - 5G&AI enabled collision warning service architecture 

Particularly, continuous high-resolution video streams (uplink) are transmitted from the vehicle over 5G 

to the CNF residing at PCT’s private cloud node which exploits the NVIDIA RTX 3090 GPU for expediting 

the AI service processing time. We define the person in proximity to truck criterion via the yellow 

bounded area as shown in Table 5. In case of positive inference (i.e., a person is detected within the 

bounding box) rapid alerts are delivered to the truck driver by exploiting the low latency 5G network. 

Particularly, inferenced video streams are transmitted over 5G (downlink) to a tablet (Samsung Galaxy 

Tab S8 5G) installed on the truck’s cabin, alerting the driver for the event, Table 5 (left). Additionally, the 

annotated video is sent to PCT’s central monitoring platform for authorized operations supervision. In 

case of negative event (i.e., no person detected in proximity or people detected outside the designated 

area) the service is customizable, were either a black screen is shown at the tablet or the annotated 

streams are delivered to the truck driver as shown in Table 5 (right) with no alerts. 

  

Table 5: LL Athens - Collision Warning System example alerting the driver for people in proximity to the truck 

 

2.2.3 List of Key Performance Indicators 

 

Table 6 describes the logistics and technical KPIs relevant for UC3 as defined in  [2] (D1.4). 
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KPI KPI ID Measured Value 

Model Inference 
Time 

A-KPI11 

Depends on the ML 
model configuration and 
the video frame size c.f. 

Section 2.2.5 

Model 
Accuracy/Reliability 

A-KPI12 

Depends on the ML 
model configuration and 
the video frame size c.f. 

Section 2.2.5 

End-to-End 
Latency 

A-KPI23 
<20ms (average) 

One-way Latency A-KPI24 <10ms (average) 

Deployment Time A-KPI3 30 seconds (average) 

User Experienced 
Data Rate 

A-KPI25 
<12Mbps (uplink, 

average) 

Table 6: LL Athens - KPIs list for UC3 

User experienced data rate (A-KPI25) is presented thoroughly in Sections 2.3 and 2.4 and is the same 
for UC3 (we exploit similar cameras). For this use case, the focus resides in monitoring the per video 
frame transmission delay and processing delay and is thoroughly illustrated in the following sections. 

 

2.2.4 Methodology and Measurement Tools 

To evaluate the 5G&AI enabled collision warning service we performed various trips/routes within the 

Port with 5G coverage (Figure 5). This use case is a mission critical service (with stringent latency 

requirements) and has many sources of delay: (i) video legacy operations (encoding/decoding); (ii) 

frame transmission delay and (iii) the frame processing time required by the AI service. In the following 

we explain our configuration setup to measure the various delay sources, and the use case evaluation. 

Cluster Clock Sync: When focusing on mission critical services with tight delay constraints (e.g., 

collision warning systems), it is of paramount importance to accurately measure the delay of critical 

decisions, and thus the transmission and processing delay of critical video frames. In a typical setup, a 

Network Time Protocol (NTP) is used to synchronize the clocks of computer systems over a network. 

However, the accuracy of an NTP server distribution model, can result in several tens of milliseconds 

clock difference across the distributed devices. This depends on how symmetric network routes between 

the servers and client are, how stable the network delay is and client’s clock, and how accurate are the 

servers themselves1. To alleviate this drawback, we connect each k8s compute node (extreme-edge 

and cloud) with a GPS receiver (connected via a serial port) creating stratum-1 devices, which also 

provide a pulse per second (PPS) signal to sync the local device clocks more accurately with the satellite 

system. Table 7 depicts information about the GPS system of cloud and extreme-edge nodes (5G truck, 

5G-Crane and 5G-IoT devices) and the achieved accuracy, i.e., the local clock offset from the satellite 

clocks as obtained from Chrony. We observe a clock difference of only a few microseconds. In the 

following, we exploit this negligible offset to accurately measure the one-way transmission delay of 

packets and frames (Figure 20 - Figure 23). 

Network configuration: Regarding the conducted experiments we tested LTE, LTE-A and 5G-NSA. 

For experiments based on 4G connectivity we exploit two LTE configurations: single carrier LTE, 

operating in frequency band B7 with a 20Mhz channel bandwidth, and LTE-A (advanced) where the 

device is configured in dual carrier aggregation mode combining B3 and B7 frequency bands, with a 

 
1 https://chrony.tuxfamily.org/index.html 
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20Mhz channel bandwidth, each. For the 5G experimentation, we used B20 and N78 frequency bands 

for control (LTE anchor) and data plane (NR user plane) functions, respectively, with a 100Mhz channel. 

Per frame transmission delay: We measure the transmission delay of the 4K frames over the LTE, 

LTE-A and 5G interfaces. To measure the per frame network delay we employ GStreamer2 tool with the 

Real-time Transport Protocol (RTP) where we create a 4K video streaming session from the vehicle. 

On the server side we use tcpdump to capture and timestamp RTP packets as they are observed by 

the network interface card at send time, and similarly for RTP packets at reception (client side). To 

eliminate clock drift (and deviation) of the devices we employ the stratum-1 clock (GPS/PPS) setup as 

explained before. Lastly, by using the Mark-field (Figure 19) of the RTP header we can distinguish all 

packets that create a single video frame, and thus calculate the video frame transmission delay over 

the various network configurations (from the 5G-truck towards PCT’s private cloud). 

 

Figure 19: LL Athens - Wireshark example trace of RTP packets and mark-field indicating the end of a 
video frame 

 
2 GStreamer is an open-source multimedia framework that provides a pipeline-based architecture for creating multimedia services. 
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Figure 20: LL Athens - Clock sync between extreme-edge node and cloud node based on GPS and PPS signals 

 
Figure 21: LL Athens - Extreme-edge node, cgps (Stratum 0) 

 
Figure 22: LL Athens - Cloud node, cgps (Stratum 0) 

 

Figure 23: LL Athens - Time offset between local clock and satellite clock of cloud and extreme edge node on truck. 

Table 7: LL Athens - Syncing clocks of distributed devices via GPS/PPS signals 
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2.2.5 Results 
 

Detailed evaluation of network KPIs have been presented in Section 2.1 capturing A-KPI-19 to A-KPI25 

(see Table 1). Here we present a subset of those KPIs relevant for the use case testing, along with the 

comparison of various network configurations (LTE, LTE-A and 5G-NSA) to get more insights in the 

performance of the various networks and the 5G&AI-enabled collision warning system requirements. 

  

Table 8: LL Athens - Cellular networks (LTE, LTE-A and 5G) benchmarking based on iperf3 tools for 
throughput measurements 

The results obtained for the 5G-NSA network are similar to the ones presented in Section 2.1.4.2. With 

respect to the various network configurations (Table 8) we observe (on average) about 480Mbps 

downlink for 5G, 190Mbps in LTE-A and about 100Mbps for LTE, whereas in uplink we observe about 

120, 90 and 30Mbps, respectively (A-KPI20). Evidently, the additional spectrum resources of 5G allow 

for higher bandwidth availability, enabling higher data rates. Considering network latency (Figure 24), 

we provide our measurements for packet round-trip times (RTT) in all network configurations measured 

via ping. For the LTE configurations (no significant difference is observed between LTE and LTE-A) we 

recorded about 28ms RTT time (on average), whereas in 5G we measured latency of about 18ms (A-

KPI23). 

Figure 25 shows our measurements corresponding to the transmission delay of 4K frames for the 

different networks, from the camera installed on the truck. We observe video frame latency of about 

30ms for 5G, 45ms for LTE-A and about 60ms for LTE, on average. Evidently, the 5G network provides 

the faster medium for delivering high resolution video frames which is pertinent for applications with real 

time constraints. 

 

Figure 24: LL Athens - RTT for the various 
network configurations 

 

Figure 25: LL Athens - Per frame network 
transmission delay at 4K resolution 
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With respect to inference accuracy (A-KPI12) of the AI service, as objects (people) within the highlighted 

yellow area (Table 5) are relatively close to the moving vehicle, we observed very few positive/negatives 

for YOLOv5n and YOLOv5s CNN models [4] and almost none for those presented in Table 9. Detailed 

evaluation for A-KPI12 and human presence detection is shown in Section 2.3.5 where the service is 

challenged to detect people at distant locations as captured by the 5G-IoT nodes deployed on fixed port 

infrastructure. For the inference time (A-KPI11) we illustrate on Table 9 the effect of the video frame 

size3 and YOLOv5 CNN model size [4] on the inference time for the cloud deployment (average results 

for 30K frames). Evidently, the general rule of thumb as also illustrated by the values below, is that the 

inference time increases, when we use higher resolution video frames or a more complex CNN model. 

 Cloud Computing (ms) 

Frame 

size 

SD HD FHD 4K 

YOLOv5x 12.9 35.1 66.2 245 

YOLOv5l 10.1 18.7 37.3 133 

YOLOv5m 8 11.8 23.2 77 

Table 9: LL Athens - Inference time of UC3 for extreme-edge and cloud deployments - (A-KPI11) 

To understand the end-to-end service delay (e2e-SD) when exploiting the cloud infrastructure for the 

collision warning service we aggregate the following delay sources: frame transmission delay (Figure 

25), the AI service inference time (Table 9), and finally the alert delivery delay. For the alert delivery we 

test two scenarios; (i) a small packet notification which triggers an audible notification, or delivering 

the full inferenced video stream at the tablet (5G downlink) installed in the vehicle.  

For the alert delivery delay, when transmitting a small packet, e.g., a sound trigger, this can be 

considered as a small packet/notification to the system of the truck and is measured as half-RTT, or 

one-way latency (Figure 24), i.e., less than 10ms for 5G. Hence, the e2e-SD is approximately 30ms for 

the frame transmission delay, 23ms of frame processing time (e.g., FHD, v5m) and about 9ms for 

triggering the alert, accumulating a total latency of about 62ms for the 5G-NSA network. The following 

table summarizes the e2s-SD for all network and CNN model configurations at the cloud deployment 

scenarios. 
Cloud processing – end-to-end service delay (e2e-SD) – (LTE, LTE-A, 5G-NSA) in milliseconds 

Frame size SD HD FHD 4K 

Network LTE LTE-

A 

5G LTE LTE-

A 

5G LTE LTE-A 5G LTE LTE-

A 

5G 

v5x 86.9 71.9 50.9 109.1 94.1 73.1 140.2 125.2 104.2 319 304 283 

v5l 84.1 69.1 48.1 92.7 77.7 56.7 111.3 96.3 75.3 207 192 171 

v5m 82 67 46 85.8 70.8 49.8 97.2 82.2 61.2 151 136 115 

Table 10: LL Athens - End-to-end service delay in various network CNN and video resolution setups 

 

Evidently 5G provides the smallest e2e-SD for all cases. In the case of delivering the inferenced video 

stream at the tablet we showcase in the following the glass-to-glass experimentation. In more detail at 

the tablet we use envyen, an app that shows current time at ms accuracy and we face the camera to 

 
3 Note that the frames are transmistted over 5G uplink at 4K resolution, and are then resized by the ML service to expedite the 
processing time. 
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the tablet to show the end-to-end application layer delay. This includes the frame transmission delay 

and frame processing time as demonstrated in Figure 25, Table 9 and Table 10, but  also the video 

application layer latency that includes encoding and decoding operations (H264, @20fps) of video 

frames. In Figure 26, the yellow boxes indicate the added delay induced for creating an additional video 

session from the cloud node towards the tablet via gstreamer. Evidently, higher resolutions (e.g., 1080p, 

4K) and higher frame rates (e.g., 10fps, 30fps) require more data to be processed, increasing encoding 

and decoding times. Additionally, the hardware capabilities of the camera, software configuration of the 

gstreamer pipelines, codec complexity (H.264 or HEVC) and the hardware capabilities of the UE for 

efficient decoding, also contribute as potential sources of delay, but also cases for improvement. 

 

Figure 26: LL Athens - Delay sources for the end-to-end collision warning system 

The results in Table 11 represents streaming on the downlink HD video at 20fps with H264 codec and 
gstreamer. On the righthand side of each figure, we observe current time and on the left-hand side we 
see the delay, i.e., past time. On average, we observed about 200-250ms of delay. When using higher 
framerate or higher resolution we observed larger values which would render the collision warning 
system impractical. However, this is not attributed to the 5G network delay or, the AI processing delay 
(as show in Figure 25, Table 9 and Table 10), but rather on the inherent latency delay sources of video 
streaming sessions as discussed above. 

 

  

  

  

Table 11: LL Athens - Glass to glass experimentation for 5G&AI-enabled collision warning system 

In summary, for the collision warning system based on audible alerts the total latency can be as low as 

50ms (depending on the configuration points shown in Table 10), whereas for the case where the 

inferenced video streaming is delivered to the truck this delay can be up to 250ms. Considering the 
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speed limitations within a port environment at 20Km/h or 5.5m/s the truck will be roughly ahead about 

0.3 meters for the audible alert and 1.5 meters for the inferenced video stream, alerting the drive in more 

detail about the visual environment in the truck’s vicinity. Hence, the two setups should be used in 

conjunction for mission critical services such as collision avoidance. 

Finally, we evaluate A-KPI3 (Deployment Time) of the CNF which is the same for UC3, UC4 and UC5 

and is presented only in this Section. Figure 27 depicts the OSM deploy time extracted from the open 

source MANO (OSM) manifest deployment logging (osm-deploy on the x-axis), as well as the CNF 

image pull time for downloading the ML image at the respective host (extreme-edge or cloud). The 

results are average values over 50 measurements. We observe first that the image pull time for UC4 is 

about 2.5 minutes (which is basically determined by the host’s throughput and the image size), whereas 

the deployment time from OSM (Release 13) for both cloud and extreme-edge orchestration decisions 

takes about 30 seconds, i.e., for the CNF to be active and running in the kubernetes cluster. 

 

Figure 27: LL Athens - Service Deployment Time for UC3, UC4 and UC5 – (A-KPI3) 

 

2.3 UC4: Optimal surveillance cameras and video analytics 

2.3.1 Description and Motivation 

Frequent incidents involving boom collisions, gantry collisions or stack collisions along with the presence 

of stevedoring personnel within the Port area make the risk for serious bodily injuries considerable. 

Hence, detecting the presence of people in high-risk areas, e.g., areas with intensive crane and/or truck 

operations, is of paramount importance for the Port operator for ensuring a safer environment in daily 

operations for employees and visitors. Additionally, AI-enabled surveillance can further aid Port security 

by detecting the presence of people in restricted areas, e.g., close to a warehouse area. Towards this 

direction, UC4 focused on the development of a cloud native 5G&AI-enabled human presence detection 

service. The developed solution exploits the eMBB service of 5G to transmit high resolution (uplink) 

video streams of the relevant areas, which are exploited by the developed ML service for the inference 

task of human presence detection and based on the inference result generate in real-time respective 

alerts (i.e., live inference/annotated streams to PCT’s central monitoring system or to handheld devices, 

e.g., 5G smartphones, exploited by mobile security patrol shifts close by). Figure 28 and Figure 29 

illustrate the view angles of the two 4K cameras exploited by the service, with the former (mounted on 

quay side crane 31) depicting people in proximity to the rails of the crane, and the latter (mounted on a 

pillar at Pier III) illustrating an area with increased truck traffic. Figure 30 and Figure 31 depict how the 

inferenced video streams (bounded boxes or segmented) are delivered to the central monitoring 

platform or handled/mobile 5G devices. 
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Figure 28: LL Athens - People detected close to QC31 rails 
(Area 1 view) 

 

Figure 29: LL Athens - Truck traffic area, no personnel 
allowed (Area 2 view) 

 

 
Figure 30: LL Athens - User interface for events monitoring with inferenced video stream (bounded 

boxes) to 5G handheld devices or central monitoring platform. 

 

 
Figure 31: LL Athens - Inferenced (segmented) video streams delivered to 5G handheld devices or 

central monitoring platform. 
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In addition to the fact that this use case increases safety measures of the employees’ workplace, it also 

opens up opportunities to optimize (i.e., redistribute) the use of human resources in different port 

operations, e.g. by reducing the patrol frequency at the risk areas (currently frequent patrols are 

distributed to inspect risk/prohibited areas), as this service is automated by the use case. 

2.3.2 Use Case Setup 

Figure 32 showcases the architecture components of the use case, and Figure 33 (including Table 12  

and  Table 13) depict real installations within the Port area. We exploit two high resolution cameras for 

inspecting two areas: a 4K camera deployed at quay side crane (QC) 31  (Area 1, Table 12) which 

monitors the area close to the crane’s base/rails (Figure 28), as well as a camera with a view angle 

towards an area (Area 2, Table 13) with increased truck traffic (Figure 29). Both areas are considered 

high risk areas due to crane operations and moving trucks. The 5G-enabled AI service can be deployed 

(as a CNF) on two locations of the 5G-LOGINNOV infrastructure. The first deployment option, i.e., the 

extreme-edge, utilizes two NVIDIA Jetson AGX Xavier devices for the two monitored areas; one device 

mounted on QC 31 and the other device installed on a Pillar at Pier III. For this case, the AI processing 

is utilized on the extreme-edge node (i.e., incurring zero network delay as the 4K cameras are connected 

to the Jetson node via ethernet), and inferenced uplink 4K video streams are transmitted over the 5G 

network to PCT’s monitoring platform. The second deployment option, i.e., PCT’s private cloud, 

employees the NVIDIA RTX 3090 GPU equipped on the cloud infrastructure. For this scenario, 

unprocessed 4K video streams (uplink) are delivered over 5G to the CNF deployed on the cloud node 

(from Area 1 and Area 2), where we exploit the massive computation capability of the node to decrease 

the ML processing time, but, at the expense of network delay. Similarly, inferenced video streams may 

be delivered to 5G handheld devices (downlink, eMBB) of patrol shifts, or the PCT’s monitoring platform. 

Extensive numerical evaluation for both scenarios is presented in Section 2.3.5. 

 

Figure 32: LL Athens - Human presence detection service architecture at extreme-edge and cloud 
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Figure 33: LL Athens - Components/installations of the 5G&AI enabled human presence detection use case 

 

  

Table 12: LL Athens - QC Crane installation of 4K camera, compute node and 5G Interface (Area 1) 

  

Table 13: LL Athens - Pillar Node Installation of 4K camera, compute node and 5G interface (Area 2) 

 

2.3.3 List of Key Performance Indicators 

Table 14 describes the logistics and technical KPIs relevant for UC4 as defined in [2] (D1.4). 
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KPI KPI ID Measured Value 

Human resource 
optimization 

(person-hours) 
A-KPI9 

Qualitative 

Model Inference 
Time 

A-KPI11 

Depends on the ML 
model configuration and 
the video frame size c.f. 

Section 2.3.5 

Model 
Accuracy/Reliability 

A-KPI12 

Depends on the ML 
model configuration and 
the video frame size c.f. 

Section 2.3.5 

End-to-End 
Latency 

A-KPI23 
<20ms (average) 

Deployment Time A-KPI3 30 seconds (average) 

User Experienced 
Data Rate 

A-KPI25 
<12Mbps (uplink, 

average) 

Table 14: LL Athens - KPIs list for UC4 

A-KPI23 corresponds to the round-trip time (RTT) values as obtained from the ping tool between the 
5G-IoT nodes and the cloud management platform, where we observed on average values below 20ms. 
For the 5G&AI-enabled video surveillance the end-to-end service delay includes the delay for the video 
encoding and decoding procedures, frame transmission delay, frame processing delay (or inference 
time as given by A-KPI11), and finally the delivery of the alert in terms of positive inference. This end-
to-end service value is presented thoroughly in Section 2.2.5. Similarly, A-KPI3 (Deployment Time) was 
evaluated in Section 2.2.5. 
 
A-KPI9 refers to the exploitation of human resources (person hours) spent for monitoring, surveillance 
and physical patrol shifts (for safety/security applications). Based on legacy procedures (before 5G-
LOGINNOV), PCT utilizes 4 physical patrol shifts per day (2 persons per shift) assisted by personnel at 
the video surveillance center. The core benefit of the 5G&AI-assisted video surveillance is on the scale 
for concurrent monitoring of the full Port area space (currently about 300 cameras are deployed), in 
addition to the current physical assisted patrol/monitoring schedules. Hence this KPIs is shown as a 
qualitative KPI, indicating that concurrent (5G&AI-assisted) monitoring of the full Port space could be 
achieved through UC4. 

 

2.3.4 Methodology and Measurement Tools 

The ML service for human presence detection was trained by obtaining data from the daily port 

operations from the relevant cameras (view angles) depicted in Figure 28 and Figure 29, under varying 

light conditions (including morning and mid-day streams). Particularly, three versions of the YOLOv5 [4] 

neural networks were exploited (small, medium and large, for more details please refer to [4]), fine-tuned 

via exploiting the 4K frames obtained from the 5G-LOGINNOV cameras. Hereafter, we refer to the three 

versions of the developed service as people_v1, people_v2 and people_v3, based on the three YOLOv5 

base models used, i.e., small, medium and large, respectively. The different models vary in size (with 

respect to their ML parameters), which has a direct impact in the accuracy of the ML service as well as 

its execution time. Additionally, all algorithms can perform resizing of the input image to a specific size 

before serving the image to the ML pipeline. For example, a 4K frame can be resized to a Full HD or 

lower resolution. This configuration reduces the required ML service processing time per frame, but, it 

may also result in loss of information, e.g., people far away from the camera will appear smaller in 

resizing, which could result in detection failure. All such parameters are thoroughly evaluated in Section 

2.3.5 for the two deployment options (extreme-edge and cloud). 
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Finally, a fourth version (namely, people_v4) for the human presence detection service was developed, 

where we consider V1 model as the base. In this approach no frame resizing is performed. 4K frames 

are used as input, where each frame is split in four equal sized frames (Figure 34). By exploiting the 

GPU parallel processing capabilities, the four images are processed concurrently by the CNF residing 

either on the cloud or far-edge. This step incurs an additional processing delay (when compared e.g., 

to V1), however, as no resizing is performed, we incur no information loss.  

 

Figure 34: LL Athens - 4K frame split into 4 equal sized parts (no resizing) exploited by the people_v4 algorithm 

To evaluate the developed ML services, we obtained video footage from the aforesaid 4K camera 

installations, spanning across several days and varying working hours, in order to evaluate the service’s 

performance under different light conditions (e.g., during morning and mid-day shifts). We present here 

the results from 600 selected frames for evaluating the service targeted detection events, i.e., 

presence/absence of people. The extracted stream parts contain events with crowds of different sizes 

(e.g., from 2-10 people) where we evaluate the accuracy of the model in detecting all such occurrences. 

Additionally, as people are constantly moving, the detection efficiency of the developed ML algorithms 

is also put to the test based on different camera angles, and at various distances within each camera’s 

field of view. In the following section we provide an extended evaluation of all developed solutions and 

CNF placement options (extreme-edge and cloud). For all inferenced results (and positive inferences) 

the CNF opens a connection also to the 5G-LOGINNOV database (as shown in Figure 35) to store the 

outcome of the processed frames for later inspection (also servicing as the ground truth in our 

evaluation). 
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Table 15: LL Athens - Sample outputs from Areas 1 and 2 of the 5G&AI enabled human presence 
detection service 

 

 

Figure 35: LL Athens - Database UI hosting the inferenced results of processed frames for UC4 

 

2.3.5 Results 

Table 16 provides the summary of the results for A-KPI11, i.e., Model inference time, for the 5G&AI-

enabled human presence detection service at the extreme-edge (Figure 36) and private cloud (Figure 

37). Evidently as the image resize parameter increases (x-axis) the inference time per frame also 

increases for both far-edge and cloud deployments. For instance, resizing a 4K frame to 640p (standard 

definition, SD) and considering people_v1 model, we measured about 25ms per frame inference time, 

or, about 30fps of inferenced video streaming (Figure 36). For the same case, if the frame is resized to 

1920p (Full High Definition, FHD), we obtain about 100ms per frame, or, about 10fps of inferenced video 

streaming. Similar qualitative results are observed for all developed solutions. It is also straight forward 

to observe that when the CNF is deployed to the cloud (Figure 37), equipped with increased computing 

capabilities (compared to the extreme-edge case), the inference time is significantly decreased, e.g., for 

people_v1 and 1920p the inference time is about 10ms, or, 100fps of inferenced video streaming. Similar 

results can be seen for the evaluation of people_v2, people_v3 and people_v4. 



 

 42 

 

Figure 36: LL Athens- Inference time for human presence 
detection -- extreme edge 

 

Figure 37: LL Athens - Inference time for human presence 
detection -- Cloud 

Table 16: LL Athens - Evaluation of Model Inference time of UC4 – (A-KPI11) 

 
In Table 17 we summarize the results according to our evaluation where we showcase for each 
configuration the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives 
(FN), of all developed methodologies (Model Accuracy/Reliability A-KPI12). Each row of the table 
depicts different resizing options of a particular model. Table 18 depicts performance metrics for all 
tested models in more detail. Evidently, the best performance is achieved by the yolov5 large model 
(46.5M parameters, vs nano 1.9M, small 7.2M, medium 21.2M, xlarge 86.7M) at an input size of 1280p. 
As expected, when the 4K image is resized to SD, we incur information lose, and thus we observe 
inferior performance, e.g., less TP, compared to FHD resolution. This observation also applies for all 
evaluated cases. 
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Figure 38: LL Athens - people_v1 resized at 640 

 

Figure 39: LL Athens - people_v1 resized at 1280 

 

Figure 40: LL Athens - people_v1 resized at 1920 

 

Figure 41: LL Athens - people_v2 resized at 640 

 

Figure 42: LL Athens - people_v2 resized at 1280 

 

Figure 43: LL Athens - people_v1 resized at 1920 

 

Figure 44: LL Athens - people_v3 resized at 640 

 

Figure 45: LL Athens - people_v3 resized at 1280 

 

Figure 46: LL Athens - people_v3 resized at 1920 
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Figure 47: LL Athens - people_v4 resized at 640 

Table 17: LL Athens - Evaluation of Model Accuracy/Reliability of UC4 – (A-KPI12) 

 

Model Accuracy Precision Recall F1 score 

people_v1 (640p) 0.658 1.000 0.633 0.775 

people_v1 (1280p) 0.880 0.995 0.876 0.932 

people_v1 (1920p) 0.970 0.991 0.977 0.984 

people_v2 (640p) 0.846 0.997 0.837 0.910 

people_v2 (1280p) 0.964 0.996 0.966 0.981 

people_v2 (1920) 0.970 0.979 0.989 0.984 

people_v3 (640p) 0.836 0.973 0.850 0.907 

people_v3 (1280p) 0.986 1.000 0.985 0.993 

people_v3 (1920p) 0.984 0.998 0.985 0.991 

people_v4 0.920 0.989 0.926 0.956 

Table 18: LL Athens - Mean Average Precision (mAP) and Precision/Recall derived metrics for all 
evaluated models of UC4 

Table 19 depicts the effect of the video frame size (x-axis) and YoloV5 CNN model size (y-axis) on the 

inference time, power consumption for cloud and extreme-edge deployments (average results for 30K 

frames from PCT camera installations). To measure the average power consumption of cloud and 

extreme-edge CNFs, we exploit NVIDIA’s native tools, namely, tegrastats for the Jetson device and 

nvidia-smi for the GPU RTX 3090, that isolate the power consumption used by the GPU for processing 

video frames. Hence, we measure the energy footprint of the AI services focusing on the video analytics 

tasks, i.e., object detection. The general rule of thumb as also illustrated by heatmaps below, is that 

inference time and power consumption increase, when we use higher resolution video frames or a more 

complex CNN model. 
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Table 19: LL Athens - Inference time and power consumption of video analytics services in cloud and 
extreme-edge deployments for the various YoloV5 configurations and video frame resolutions. 

Figure 48 depicts the 5G uplink experienced data rate (User Experienced Data Rate, A-KPI25), i.e., the 

consumed (and necessary) bandwidth utilized by the 4K cameras (relevant to UC4, UC3 and UC5) 

deployed within PCT. Each sample point on the x-axis (s1, s2,..,s7)  represents the average data rate 

over 3600 seconds/samples (i.e., 1 hour of continuous 4K video streaming), totalling an entire working 

shift duration of about 7 hours. For clarity we present the results from Area 2 (Table 13 and Figure 29) 

as it is similar for the other 4K monitored areas. We observe that the average streaming requirements 

are about 9.5Mbps where we also depict the observed upper and lower boundaries, with encoding 

mode: H.264, 4K resolution of 3840*2160 at 20fps. 

 

Figure 48: LL Athens - Uplink User Experienced Data Rate – (A-KPI25) 

2.4 UC5: Automation for ports: port control, logistics and 
remote automation 

2.4.1 Description and Motivation 

Detecting the presence (or absence) of container seals for containers inbound at a port is of paramount 

importance for the port operator, as the presence of a seal validates the integrity of the container 

contents. It is not rare however for containers to arrive with broken/absent seals and missing content, 
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especially when their transportation plan involves transhipments; in such cases, the involved ports 

should be able to prove that the container left the port with its seals intact or pay the claimed financial 

reimbursements. Typical containers locked and sealed are shown in the following two figures. 

  

 

A mother vessel at PCT requires (on average) about 3000 stevedore moves (depending on the vessel 

size) to complete loading (and/or unloading) operations. Manual seal-presence check requires one 

person at the foothold/base of the crane where the quay side crane operations take place (Figure 49), 

and about 10-30 seconds to manually inspect each container, until the crane operator proceeds to the 

next container movement. Reducing this time by e.g. 3 seconds per container, results to 9000 seconds 

(or 2.5 hours) reduction of vessel stay at the port and removes the need for human presence at an area 

with high safety risks. Towards this direction, this use case takes advantage of the private 5G NSA 

network at the port of Piraeus and advanced computer vision techniques (AI-enabled video analytics) 

to automatically detect the presence (or absence) of container seals during the loading (and unloading) 

process of vessels, thus automating and expediting the port operations, improving the utilization of 

human resources as well as increasing the employee’s safety. 

 

Figure 49: LL Athens - Manual check for container seal 

2.4.2 Use Case Setup 

Figure 50 depicts the architecture of the use case, whereas Figure 51 showcases real 

components/installations. At PCT, the quay side crane (QC) 31 is equipped with a wide-angle camera, 

continuously capturing 4K video of the crane’s activity (vessel loading/unloading operations). Following 

the compute continuum paradigm, we evaluate two deployment options of the 5G enabled AI service, 

i.e., at the extreme-edge (on NVIDIA Jetson AGX Xavier device mounted on the QC cockpit, scenario 
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1, Table 12), or at the 5G LOGINNOV cloud node residing beyond the 5G core network of Vodafone, at 

PCT’s datacentre, hosting NVIDIA RTX 3090 GPU (scenario 2, Table 13) to accelerate the processing 

time of the ML service. In scenario 1 the processing takes place on the extreme-edge node and we 

exploit the eMBB service of 5G to deliver uplink inferenced/annotated 4K video streams at PCT’s central 

platform for live monitoring of loading/unloading operations. For scenario 2, unprocessed 4K video 

frames are transmitted over 5G to the AI container residing at PCT’s cloud node, where the processing 

takes place. Numerical evaluation for both scenarios is presented in Section 2.4.5 

 

Figure 50: LL Athens - Seal detection service architecture at extreme-edge and cloud 

 
Figure 51: LL Athens - Components/installations of the 5G&AI enabled container seal detection use 

case 

The service orchestration of the ML service and service components has been documented in detail in 

[1], including the presentation of the MANO platform (software and hardware wise), service instantiation 

flows, lifecycle management operations, etc. As illustrated in Figure 51, Port assets exploited for the 

use case validation include QC 31, a 4K camera mounted on QC 31 for continuously monitoring crane 

operations, a 5G modem to establish broadband communication between the crane and PCT’s 

datacentre, an NVIDIA Jetson AGX Xavier device for facilitating the extreme-edge placement (scenario 

1) as well as a dedicated cloud server, located at PCT’s datacentre hosting an NVIDIA RTX 3090 GPU 

to facilitate the cloud deployment case (scenario 2). 
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The ML seal detection service is packaged as a CNF (orchestrated via OSM and kubernetes) based on 

the described placement options, i.e., the kubernetes worker nodes. The model is composed of two 

consecutive ML services: a) container detection and b) seal detection. Particularly, from the original 4K 

frames, we first extract the part of the frame which corresponds to the container with focus on the 

container door, and in the sequence on the extracted image, we search for the container seal. 

2.4.2.1 Container Detection  

 

For the container detection algorithm, we exploit two different versions, hereafter coined container_v1, 

and container_v2, where both versions exploit the same seal detection ML model. 

For container_v1 a pre-trained U2Net [5] is used to extract a mask of the most salient object in a frame, 

in that case the container which passes in front of the camera. The mask is used for background 

removal. Then, the image’s contours are calculated and are matched (or not) with the contour of a typical 

container. 

For container_v2 a pre-trained medium sized YOLOv5 [4] neural network was re-trained on 2000 

images with containers and 2000 images without containers. During training the network’s first 23 high-

level layers were frozen, meaning that only the last layer of the network was fine-tuned to the task. 

2.4.2.2 Seal Detection 

 

Seal detection: Another medium sized YOLOv5 [4] network was trained from scratch for 100 epochs 

on a manually annotated dataset of images with containers and their seals. The dataset consists of 

50.000 images, which was augmented via random perspective transformations into 500.000 images. To 

avoid any overfitting, the best scoring model on the validation set was stored. 

2.4.3 List of Key Performance Indicators 

 

Table 20 lists the logistics and technical KPIs relevant for UC5 as defined in [2] (D1.4). 

KPI KPI ID Measured Value 

Vessel Operation 
Completion Time 

A-KPI10 
16% (estimated average) 

Model Inference 
Time 

A-KPI11 
 125ms @extreme-edge 

35ms @cloud 
(average) 

Model 
Accuracy/Reliability 

A-KPI12 
Depends on the ML 

model configuration c.f. 
Section 2.4.5 

Human resource 
optimization 

(person hours) 
A-KPI9 

Qualitative 

Deployment Time A-KPI3 30 seconds (on average) 

User Experienced 
Data Rate 

A-KPI25 
<12Mbps (uplink, 

average) 

Table 20: LL Athens - KPIs list for UC5 
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A-KPI10 explains the reduction of vessel stay at the port premises, i.e., the time required for the vessel 
operations to be completed. Figure 52 depicts for the period of 01-01-2022 to 10-10-2023 the number 
of containers movements (load/unload operations) realized at the Port of Piraeus. The time required for 
a single container move is approximated at about 2 minutes (including the manual seal check process). 
This value is a practical observation as it depends on various factors, e.g., cargo type and weight, the 
cargo weight distribution, position of the container on the vessel, crane move type, e.g., twin/tandeem, 
weather conditions, crane operator experience, etc. Given these considerations, if we allocate 10 
seconds for the container seal (manual) process, UC5 (automates) expedites (on average) the container 
movements for Coastal vessels from 108.46 to 90.38 minutes, for Feeder vessels from 3085.02 to 
2570.85 minutes and for Main trade vessels from 3821.78 to 3184.81 minutes. On average this results 
in about 16% reduction in the vessel stay at the Port premises. 

 

 
Figure 52:  LL Athens - PCT's average container handling per day and per vessel type 

 
A-KPI9 refers to the exploitation of human resources (person hours) spent for the seal check process. 
Legacy procedures, i.e., manual seal check (before 5G-LOGINNOV) occupied about 78 hours per week 
handled by 2-person shifts. Human involvement can be completely removed from this service based on 
the accuracy of the AI service, and is qualitatively assessed for UC5. 
 

 

2.4.4 Methodology and Measurement Tools 

The dual ML solution was trained by obtaining data from the daily port operations at PCT. The quality 

of such a system is determined by the order of magnitude of data used to train and re-train the models 

(as described in 2.4.2), in order to increase the accuracy (i.e., correct inference) of the model, and thus 

the efficiency of the service. To evaluate the developed solution, we obtained more than 30 hours of 

footage from the 4K camera installed on QC 31, spanning across several days and varying working 

hours in order to obtain video feed with different light conditions (during morning and mid-day shifts). 

The evaluation presented in Section 2.4.5 includes 1000 container moves, where each container move 

is composed of several frames capturing the motion of the crane at the loading/unloading phase. As an 

example, Table 21 depicts part of the frames for a single container operation at 4K resolution and 25 

frames per second. The detailed test protocol for this service is described in [3]. 
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Table 21: LL Athens - A set of frames depicting a single container movement 

For all inferenced results (and positive inferences) the CNF opens a connection also to the 5G-
LOGINNOV database (as shown in Figure 53) to store the outcome of the processed frames for later 
inspection (also servicing as the ground truth in our evaluation). 
 

 
Figure 53: LL Athens - Database UI hosting the inferenced results of processed frames for UC5 

 
Finally Table 22 illustrates snaphost of the user interface created for UC5, where the inferenced video 
stream is delivered to the central monitoring palfrom along with several data cards depicting the 
productivity level of the crane (e.g., how many container movements have been performed), network 
KPIs such as data rate and latency, as well as ML KPIs such as the inference time. 
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Table 22: LL Athens - User Interface for UC5 

 

2.4.5 Results 

Figure 54 provides the summary of the results for A-KPI11, i.e., Model inference time, for the 5G&AI 
enabled container seal detection service at the extreme edge  and cloud deployment options of the 5G-
LOGINNOV compute continnum. We provide the results for both developed solutions (container_v1 and 
container_v2) as described in Section 2.4.2. Note that each solution utilizes two models (container 
detection and seal detection) for the end-to-end service, which are sequential, thus, the service time is 
the aggregation of container time and seal time as depicted in the x-axis, i.e., about 170ms per frame 
for container_v1 model and about 120ms for container_v2, at the extreme edge. Hence, the live 
inferenced fps acquired via the (relatively) limited compute capabilities of the NVIDIA AGX Xavier 
extreme edge node is about 6fps and 9fps for container_v1 and container_v2, respecrtively. Similarly, 
moving to the cloud placement of the CNF exploting the NVIDIA GPU RTX 3090 compute, the acquired 
inferenced streams are about 14fps for container_v1 methodology and about 25fps for container_v2. 

 
Figure 54: LL Athens - Inference time for container seal detection -- extreme edge and cloud 

placement – (A-KPI11)  

In Table 23 we summarize the results according to our evaluation where we showcase for each 
configuration the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives 
(FN), of the two developed algorithms (Model Accuracy/Reliability A-KPI12). The first row shows the 
efficiency of both solution where we focus only on the container detection sub-task, whereas the second 
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row is dedicated to the accuracy of the seal detection task. We observe that for both tasks’ container_v2 
has a better performance with higher TP/TN values and lower FP/FN values. 

 

 
Figure 55: LL Athens - Container Detection 

Version-1 Evaluation 

 
Figure 56: LL Athens - Container Detection 

Version-2 Evaluation 

 
Figure 57: LL Athens - Seal Detection Version-1 

Evaluation 

 
Figure 58: LL Athens - Seal Detection Version-2 

Evaluation 

Table 23: LL Athens - Evaluation of Model Accuracy/Reliability of UC5 – (A-KPI12) 

A further and more detailed analysis for the accuracy of the developed solutions is presented in Table 
24. 

 
Model Accuracy(T/(T+F)) Precision Recall F1 score 

container_v1  0,994320379 0,752642706 0,751054852 0,751847941 

container_v2 0,999564965 1 0,962025316 0,980645161 

seal_v1 0,996374359 0,817258883 0,585454545 0,68220339 

seal_v2  0,997123659 0,754901961 0,84 0,795180723 

Table 24: LL Athens – Accuracy (true/(true+false)), Precision and Recall derived metrics for the True 
Positive class in Figure 55-Figure 58 

Figure 59 depicts the 5G uplink experienced data rate (User Experienced Data Rate, A-KPI25), i.e., the 
consumed (and necessary) bandwidth utilized by the 4K camera installed on QC31 crane. We exploit 
the same camera hardware and (configuration options for the 4K streams) as in UC4. Similarly, the 
sample point on the x-axis (s1, s2,..,s7)  represent the average data rate over 3600 seconds/samples 
(i.e., 1 hour of continuous 4K video streaming), totalling an entire working shift duration of about 7 hours. 
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We observe that the average streaming requirements are about 9.5Mbps where we also depict the 
observed upper and lower boundaries, with encoding mode: H.264, 4K resolution of 3840*2160 at 20fps. 

 
Figure 59: LL Athens - Uplink User Experienced Data Rate – (A-KPI25) 

Next, we evaluate A-KPI3 (Deployment Time) of the CNF for UC5. Figure 60 depicts the OSM deploy 

time extracted from the open source MANO (OSM) manifest deployment logging (osm-deploy on the x-

axis), as well as the CNF image pull time for downloading the ML image at the respective host (extreme 

edge or cloud). The results are average values over 50 measurements. We observe first that the image 

pull time for UC5 is about 6.5 minutes (which is basically determined by the host’s throughput and the 

image size), whereas the deployment time from OSM (Release 13) for both cloud and extreme-edge 

orchestration decisions takes about 30 seconds, i.e., for the CNF to be active and running in the 

kubernetes cluster. 

 

 
Figure 60: LL Athens - UC5 Service Deployment Time – (A-KPI3) 

 

2.5 UC7: Predictive Maintenance 

2.5.1 Description and Motivation 

AI-assisted predictive maintenance powered by 5G technology becomes a pivotal tool in ensuring 

efficiency, safety, and sustainability in the maritime industry and the logistics supply chain. Particularly, 

the focus of this service within 5G-LOGINNOV and PCT reside in yard truck Port assets (about 200 

trucks) that facilitate the daily port activities, and the prediction of possible breakdowns, reduction of the 

downtime for repairs, optimise stock of spare parts, increase the service life of yard vehicles and 

enhance operational efficiency through minimisation of breakdowns. The proposed tool captures 

historical and recent status data for the assets in question, utilized by the ML algorithm and driving a 

per yard-truck data driven approach (schedule of purchases, storage of parts, proactive maintenance), 
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by taking advantage of 5G technology that provides a flexible, reliable and predictable environment to 

remotely keep track of the connected assets on a rea-time basis. 

2.5.2 Use Case Setup 

In addition to the video camera installed on the trucks for the collision warning service presented in 

Section 2.2, other on-truck sensors are utilized for extracting telemetry information from the trucks 

engaged in various daily port operations. Specifically, a 5G gateway (based on either Teltonika’s 

RUTX50 industrial 5G gateway or Robustel R5020 5G IoT Router) is set up on the trucks to enable live 

data collection from the vehicles, and interconnection with the central traffic and operations monitoring 

system (TMS) located at PCT’s datacentre, similar to UC3. The 5G gateway is interconnected (via 

ethernet) with various on truck data sources including CAN-Bus, container weight sensors, container 

presence sensors and GNSS for live monitoring of the performed work/activities. Figure 61 depicts the 

visualization tool for the accumulated telemetry. 

 

Figure 61: LL Athens - Cellular connected yard trucks live operations monitoring 

In addition to the live monitoring of the truck operations, the main focus of the proposed use case is to 

exploit an AI-assisted predictive maintenance service exploiting CAN-bus data, historical maintenance 

and break down data to predict future breakdowns of yard trucks as well as the parts that will be affected 

and relative spare parts required for the maintenance. 

2.5.3 List of Key Performance Indicators 

Table 25 describes the logistics KPIs relevant for UC7 as defined in [2] (D1.4). 

KPI KPI ID Expected Impact 

Parts in Stock A-KPI13 Improved  

Vehicle 
Breakdowns 

A-KPI14 
Improved 

Vehicles Under 
Maintenance 

A-KPI15 
Improved 

Vehicles 
Unexpected 
Breakdown 

A-KPI16 
Improved 

Maintenance 
Costs of Vehicles 

A-KPI17 
Improved 

Assets Idling A-KPI18 Improved 

Table 25: LL Athens - KPIs list for UC7 
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2.5.4 Methodology and Measurement Tools. 

The use case of AI-assisted predictive maintenance involves the yard trucks of PCT engaged in the 

daily port operations. Predictive maintenance utilizes 5G-enabled condition monitoring, advanced 

inspections, and data analytics to predict yard truck component or equipment failure. It comprises 

different analytical algorithms in the context of predictive maintenance, providing a data-driven 

preventive maintenance schedule as well as a data-driven schedule of purchases. In order to provide 

this output, the AI-enabled service is connected to the TMS (Figure 61) to draw CAN-Bus data from 

trucks as well as to PCT’s Enterprise Asset Management System (EAMS) to draw historical 

maintenance data – both scheduled maintenance (as instructed by the OEM) and breakdowns, including 

truck parts utilized for repairs. The tool gives the flexibility to the user to select the historical data period 

that the prediction will be based on as well as the period and the specific spare parts for which the 

predictions need to be made (Table 26). 

 Description 

System Input Historical telemetry, maintenance and breakdown data of the yard trucks 

fleet for a period of two years 

System Output List of predicted dates of breakdown of yard truck (parts) along with spare 

part requirements for the fix/replacement 

Success criterion Accuracy of prediction 

Table 26: LL Athens - AI-assisted predictive maintenance system input and output 

PCT decided to focus on the prediction of fast-moving parts such as engine filters and tires (c.f. Section 
2.5.5), that are purchased on a quarterly basis separately from parts that are rarely subject to 
breakdowns and most of the time, their life-span exceeds one year. Focusing on fast-moving parts 
allows to reduce inventory storage space and achieve cost savings. Two case scenarios were tested 
for PCT yard trucks. The purpose of the first scenario was to determine the maintenance schedule (i.e., 
proactive maintenance) for yard trucks while the second scenario focused on determining the number 
of the spare parts required for maintenance. 

Particularly, for each separate vehicle the following information is stored on a weekly level. 

• Total number of kms the vehicle has traveled during the past week. 

• Total time in hours the vehicle was in move during the past week. 

• Total cargo weight transferred by the truck during the past week. 

• A list of maintenance actions performed on the specific vehicle during the past week. Each 
maintenance action essentially corresponds to the replacement of a specific part. In this 
work, we focused on 5 of the most « fast moving » parts, namely P1, P2, P3, P4, P5 (c.f. 
Section 2.5.5). 

The ML algorithm uses as input the total number of kms the vehicle has travelled, total time in hours the 

vehicle was in move and the total cargo weight transferred by the vehicle since the last replacement of 

each one of the considered parts P1,…,P5, a total of 15 measurements. The output consists of 

estimations of the aforementioned quantities until the next replacement of each part, a total of 15 

estimations. 

Of note, the labels needed to carry on the supervised learning task at hand can be derived from the 
stored data in a straightforward manner. 

A variety of basic regressors within a multi-output estimation scheme were used to attack the problem. 
Among them, and for randomized 5- to 10- fold cross validation schemes, Scikit’s [1] k-Nearest-
Neighbors and Decision Tree regressors outperformed all the rest with no significant performance 
differences between them. The aforementioned regressors demonstrated mean absolute errors which, 
when projected in time by the future schedule of each vehicle, resulted in timely estimation errors in the 
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order of 1 to 2 weeks. In the scope of quarterly based spare part purchases policy followed by PCT this 
is well within the accepted margins. 

2.5.5 Results 

In order to determine the effects of applying the maintenance schedule suggested by AI-service we 
compare the decisions of authorized Port personnel based on experience, against the suggestions 
(when to take maintenance actions and which parts to purchase) derived by the ML service, for 2 
quarters, i.e., Q4 of 2022 and Q1 of 2023. 

To evaluate A-KPI14 (Vehicle Breakdowns), A-KPI15 (Vehicles Under Maintenance) and A-KPI16 
(Vehicles Unexpected Breakdown) we exploit the evaluation of the algorithm based on the accuracy of 
the prediction in terms of true/false positives/negative rates. In more detail we observed the following; 
true negatives (i.e., no breakdown predicted and no breakdown actually occurred), were measured at a 
rate of about 85%, and true positives (i.e., breakdown predicted and occurred within 2 weeks), were at 
a rate of about 81%. Hence, if the suggested maintenance scheduled was applied and relevant parts 
predicted to fail were replaced according to the predictions, a direct impact can be expected on the 
aforementioned KPIs.  
 
To evaluate A-KPI13 (Parts in stock) a comparison between the original purchase plans made by the 
port’s personnel and the plans made by taking into consideration the estimations of the ML-system is 
depicted in Table 27, which were found satisfactory by the personnel responsible for the vehicles’ 
maintenance planning, showing Q4 of 2022 and Q1 of 2023. Potential savings are attributed to A-KPI18 
(Maintenance Costs of Vehicles). 

Q4 of 2022/Q1 of 2023 

ID Part Description Qty 

Purchased 

(Q4/Q1) 

Qty 

Occurred 

(Q4/Q1) 

Qty 

Predicted 

(Q4/Q1) 

Potential 

Savings 

(Q4/Q1) (%) 

P1 Tyre 1200R22, 5 18PR 230/220 210/218 218/213 5.21/3.18 

P2 Fuel Prefilter with water trap (Donaldson P550848 

Kalmar)  

50/45 37/41 35/39 10.81/13.33 

P3 Hydraulic filter (Donaldson P171543) 70/65 53/58 59/61 15.7/6.1 

P4 High capacity Allison transmission filters (P/N 

29558329) 

75/65 60/54 71/59 5.33/9.23 

P5 Main Fuel Filter (Donaldson P550880) 40/35 30/28 27/32 3.33/8.57 

Table 27: LL Athens - Evaluation of AI-assisted planning for spare parts purchase (Q4 of 2022 and Q1 of 2023). 

A positive impact on A-KPI18 (Assets idling) can be also deduced from the abovementioned activities. 

AI assisted predictive/proactive maintenance scheduled (instead of reactive maintenance) based on the 

suggestions of the designed ML-system and carried out during idle periods, e.g., during shift changes, 

and not at the event of an unexpected breakdown, can result into time savings (i.e., less idle time) 

between 40-80 minutes (based on PCT’s track record of such events). Additionally, in the case of 

proactive maintenance no disruption to related port operations would be incurred compared to the case 

were the truck needs repairs during an operation, e.g., while carrying a container to/from a vessel. Hence 

proactive maintenance, not only improves the assets idling time via data driven proactive maintenance 

schedules, but also maintains the work flow of other operations chains, e.g., the sequence of vessel 

loading uninterrupted. 

We note that in Table 27, there are cases where the Predicted Quantity fell short of the actual number 

of corresponding events (Occurred Quantity) during the Quarter under consideration. For the two 

quarters under consideration port personnel did not find this problematic, since there was always a small 

stock of pertinent parts. Adding a small epsilon in the predicted values may practically solve the majority 

of such cases which will impact A-KPI13 and A-KPI17. Regardless, results show that finer tuning of the 
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algorithm, accomplished via training with more data and testing for more quarterly periods can be 

expected to result in more accurate and safer predictions, and more direct saving for the port assets 

and equipment. 

Finally, by estimating the spare parts demand for a certain period, procurement departments can 

optimize their ordering and receiving processes, which can lower the administrative and parts costs -

Maintenance Costs of Vehicles (A-KPI17)- and improve the overall delivery efficiency of spare/repair 

parts. Additionally, Inventory space for spare parts can be minimized and better managed A-KPI13 

(Parts in stock). 

In terms of operational efficiency, proactive maintenance and reduction of breakdowns entails many 

benefits for the port operator. The straightforward case is the reduced number of breakdowns that mainly 

affect the operations performed for vessels. Containers (as also illustrated in Section 2.4) are 

loaded/unloaded to ships following a specific sequence (flow) considering different parameters including 

the final destination of the cargo, cargo type, the weight and weight distribution, ensuring the 

minimization of stevedore moves (for quay side crane operations), the stability of the vessel and safe 

lashing/unlashing of containers on the vessel.  

A single truck failure (e.g., engine breakdown resulting in immobilization of a truck) during a container 

movement/operation, requires restructuring of the vessel loading/unloading plan, either reserving the 

area around the broken truck for on-site repairs or transferring the container to another truck using a 

straddle carrier or a reach stacker and towing the broken truck to the designated repair area. Evidently, 

even if the actual repair time is usually short, the overall time required to resume truck operation after a 

breakdown is much longer.  

2.6 UC2: Device Management Platform Ecosystem 

2.6.1 Description and Motivation 

The device management platform ecosystem serves as a robust backend system that is specifically 

designed to track and monitor vehicles, including trucks, and provide valuable feedback to operators 

such as managers and logistics teams. In the context of this project, we utilized trucks that were already 

being monitored on the platform, both within and outside of the port area. While the majority of their 

travel occurred outside the container terminal, it was essential to consider their time, space, and 

occupancy in the vicinity of the port as it affects the in-port operations, closely intertwined with yard 

trucks.  

To make informed decisions about traffic conditions outside, towards, and within the port, we relied on 

the data available through the platform. This information was derived from a GPS location-based 

system, encompassing parameters such as timestamp, speed, location, and vehicle-specific data like 

engine status (idling, off, or moving). By leveraging this data, we were able to assess traffic and mobility 

conditions both outside the port and within its premises. Further analysis allowed to get insights of port 

operation, focusing the truck loading procedures.  

During the project review, it was emphasized that showcasing and capitalizing on the capabilities of 5G 

technology within port operations was of an interesting concept in relation to the device management 

platform ecosystem and the project’s context. Following the recommendations and engaging in 

discussions with fleet experts, we identified a specific need expressed by truck drivers – the desire for 

improved awareness of their surroundings while manoeuvring. This need presented the perfect 

opportunity to harness the capabilities of the platform, address feedback from reviewers, utilize the 

features of 5G (including high bandwidth, low latency, and support for multiple subscribers with high-

quality video streaming), and ultimately develop a new product while respecting the security and 

personal data of the drivers. 



 

 58 

The result of this was the creation of a mobile application specifically tailored for the context of this 

project, designed to complement the existing IoT Device Management Platform. The mobile application 

encompasses two distinct functionalities. Firstly, it offers GPS location tracking and provides drivers with 

relevant information regarding port operations. Secondly, it provides a multi-camera video feed from 

other trucks equipped with the same application. Thirdly it offers a manager / driver communication 

means altogether. Essentially, the product serves as a unique video conferencing application that 

facilitates parking trucks by offering real-time video feeds from different perspectives, as a 

communication tool between fleet managers and drivers and a tracking device. This innovation 

significantly enhances drivers' situational awareness during manoeuvring and contributes to overall 

operational efficiency within the port. 

2.6.2 Use Case Setup 

 

IoT platform is utilized in the project in 2 distinct methods. First its data from trucks adjacent to the port 

and inside the port are used to enhance route and fuel efficiency and reduce empty truck runs. Second 

the platform is extended with video collection and broadcasting capabilities targeting a newly developed 

mobile application; this was a request that originated during the review and was well received comment 

that added. 

The following assets were used during the testing of the living lab. 

• Port Assets  

o Port area 

o Trucks (from VI customer base) – 21 trucks used. 

• Software components  

o Linux Based VM 

o Mobile Application Development Software (Android Mobile Application) 

o Custom coded web server (data capture server) 

o Custom desktop and mobile application for testing (Ping, open close connections, video 

rate logging) 

o Video conference open-source server – GRPC Live Kit server 

o Existing IoT Platform – Staging Environment for RnD 

• Software Libraries 

o Track and Know tools – Hotspot Analytics 

• Hardware components 

o IoT Devices – Teltonika FMB130, FMB640 

o 5G Enabled mobile phones: Samsung A22 5G 

o 5G Modem RM500Q-AE 

• Information on trucks, technologies, emissions, and standards. 

• Identification of truck operations within the port related to external trucks 

o Operational of external truck tasks 

▪ Entrance to the main gate 

▪ Loading/unloading at the main stash 

▪ Trip to the exit gate 

▪ Weigh measurement 

▪ Customs paperwork 

▪ Exit from gate. 

o Operational duration 

▪ Average duration since entry up to the main square loading 15,4 minutes 

▪ Average duration since the completion of the task at main square up to the exit 

gate is 25,3 minutes. 
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2.6.3 List of Key Performance Indicators 

Table 28 describes the logistics and technical KPIs relevant for UC2 as defined in [2] (D1.4). 

KPI KPI ID Expected Impact 

Percent of Empty 
Containers Runs 

A-KPI4 
Qualitative* 

Mean time of 
container job 

A-KPI5 
Qualitative* 

Time needed for the 
device to open a 
network connection 

A-KPI6 
<55ms for 5G 

CO2 Emissions A-KPI7 Improved 

Fuel Consumption A-KPI8 Improved 

End-to-End Latency A-KPI23 <20ms (average) 

One-way Latency A-KPI24 <10ms (average) 

User Experienced 
Data Rate 

A-KPI25 
Depending on the number of 
concurrent application video streams 
c.f. 2.6.5 

Table 28: LL Athens - KPIs list for UC2 

KPIs A-KPI4, A-KPI5, A-KPI7, A-KPI8 are relevant to the Device Management Platform and the location 

of truck inside and outside targeting to reduce the time an external truck operates in the port and 

increasing fuel efficiency. These scenarios don’t require the capabilities of the 5G network in terms of 

latency or data rate, but rather the capabilities of 5G to support a massive number of connected devices, 

i.e., the fleet of external trucks (i.e., device density) along the route towards/from the port area. 

For A-KPI4 and A-KPI5 limited data were collected from the operations of external trucks. Due to the 

sensitivity and strict confidentiality of such port operation processes, it was not allowed by the authorities 

to collect data of the size of magnitude that will allow an adequate analysis and evaluation of the KPIs. 

Hence a qualitative assessment took place and is reported in the Section 2.6.5. 

For KPIs A-KPI6, A-KPI23, A-KPI24, A-KPI25 this UC also includes a mobile application as “Around 

corner camera” to assist truck drivers while parking or manoeuvring. In this added scenario, real-time 

crystal-clear video feed from other trucks is essential as the reasoning is to replace the truck mirrors 

while manoeuvring when the mirror (or onboard camera) is not sufficient. 

2.6.4 Methodology and Measurements Tools 

As mentioned, this use case holds two different cases in effect. The first case is to leverage the external 

truck location outside and inside the port. 14 Vehicles were estimated for the experiment, but 21 where 

actually used, since more trucks operated at the port since the beginning of the project. The following 

data were gathered from the trucks, speed, GPS coordinates, timestamp and engine status (moving, 

idling and off). This information is used, along with PCT input of the port operations to redistribute traffic 

towards the port and to estimate possible fuel savings and in effect, NOx and CO2 reduction. The whole 

area of the port was used, not only the area with 5G coverage, since for this part of the use case the 5G 

network doesn’t not offer any additional benefits. 

Figure 62 depicts the truck depots participating in the analysis. The trucks originate from adjacent areas 

of the port (red circles 1 to 5). 
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Figure 62: LL Athens - Truck depots for UC2 evaluation 

Routes from these vehicles were recorded during the test period of April / May 2022 along with older 

data of the area to get the background traffic of the area. 

• Vodafone Device Management Platform (outside and inside the port area) 

The Device Management Platform was used to visualize the actual routes of the trucks and also the 

simulated routes. This gave an overview to an expert in port logistics to suggest the possible alternatives 

that could potentially offer better fuel economy. Details of the VFI trucks are shown in the following table. 

TRUCK_NAME TRUCK_ID LOGISTICS_OPERATOR DEVICE 

Truck01 23459 Customer A FMB120  

Truck02 23460 Customer A FMB120  

Truck03 23463 Customer A FMB120  

Truck04 24041 Customer B FMB120  

Truck05 26753 Customer C FMB120  

Truck06 26757 Customer C FMB120  

Truck07 26761 Customer C FMB120  

Truck08 26762 Customer C FMB120  

Truck09 39264 Customer D FMB120  

Truck10 39265 Customer D FMB120  

Truck11 39270 Customer D FMB120  

Truck12 9418 Customer E FMB640 +5 Fuel_Can bus 

Truck13 9415 Customer E FMB640  

Truck14 23462 Customer A FMA120  

Truck15 9952 Customer F FMB630 +5 Fuel_Can bus 

Truck16 9958 Customer F FMB630 +5 Fuel_Can bus 

Truck17 18109 Customer G FMB640 + 5 Fuel Can Bus 

Truck18 18110 Customer G FMB640 + 5 Fuel Can Bus 

Truck19 18112 Customer G FMB640 + 5 Fuel Can Bus 

Truck20 18114 Customer G FMB640 + 5 Fuel Can Bus 

Truck21 18115 Customer G FMB640 + 5 Fuel Can Bus 

 

In this dataset only truck data where used, not small passenger cars with different acceleration and 

deceleration capabilities where used. Once data were captured and analysed (traffic and runs) we 

performed scenarios where trucks followed recommendations on the traffic, empty spots and container 
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loading. The analysis process was based on hot spot analysis using the expertise of the Track and 

Know project (H2020 No 780754). Hot spots idling and non-moving trucks were identified. While loading 

/ unloading a truck a hot spot was expected since at that time the truck is not moving but idling. However 

other locations within the port premises that identified as hot spots were areas of truck waiting. This 

information was used to deduce wait times and unnecessary idling engine times. The visualization tools 

provided by the device management platform provided an easy identification of the hot spots. The 

benefit and possible reduction of wait times, CO/NO emissions (A-KPI7) and fuel reduction was possible 

by holding trucks outside of the port at the heaviest peak times and at best not to depart from origin.  

As can be seen on the following map (Figure 63), the external trucks are seen at the following operating 

points, for 2 opposite operations. 

• An empty truck arrives and picks up a container from the stack.  

• A loaded truck arrives and leaves a container to the stack. 

 

The stash is the place where the containers remain before being loaded at the ship or when unloaded 

from the ship. The empty truck passes through the customs with no delay as no paperwork is required, 

on the other hand loaded trucks are expected to pass paperwork through customs. This port operation 

is the first hot spot (regarding delay and wait time with idling engine). Once the truck is in the yard, the 

distance travelled is within 1Km range. The truck is headed at the loading crane. This operation takes a 

couple of minutes. However, delays can occur; this is the second hot spot. 

 

Figure 63: LL Athens - Identified Hotspots, areas of idling 

The second case was the parking assistant. To achieve this a mobile application was developed 

(screenshots follow). This is a mobile application software that relies on the IoT Platform to manage 

driver login and location data, whereas is extended with multicast video capabilities for live video feed 

from various sources.  Within the test context 4 vehicles were selected for testing. During the testing a 

truck would manoeuvre while the driver would view the truck and its surrounding from nearby trucks. 

Especially on 90o corner parking this feature was well received.  While modern trucks have cameras, 

this scenario showcased an extra security feature; at areas that external cameras don’t have visibility. 
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Following the scenarios defined in D3.2 storyboards parking / moving scenarios was carried out with 

the use of the mobile application as a parking assistant. Of course, for safety reasons the truck drivers 

used outside assistance and used their mirrors as is required by traffic law. 

 

Figure 64: LL Athens - UC2 parking application user interface 

2.6.5 Results 

In order to test the latency (ping) 2 methods where used. One with the application Network Analyzer 

Pro (mobile phone Samsung A22 5G) and a second option via a coded C# application using the 

System.NET.HTTP library to perform the ping action and log the results. A laptop with the 5G Modem 

RM500Q-AE connected at the UTP port. A subset of the results is shown in the following figure, where 

we observe on average 16.3ms (A-KPI23) for the 5G network, and in coherence with the results of 

Section 2.1.4. Similar, to Section 2.1.4, A-KPI24 (one-way-latency) is assumed half RTT, i.e., on 

average <10ms. 

 

 
 

In order to test the A-KPI6, a web server was set up on the other side of the server. A series of HTTP 

requests were performed and the dates where logged on both the client machine and the server. Both 

machines where UTC coordinated via the internet.  This duration includes not only the traffic, but the 

SSL certificate handling, server package decoding and DB storage. The same packet of 238Bytes was 

used as payload, this packet requires 48ms to be logged in the database a local server; including the 

CPU and DB resources required. For the test scenario 600 attempts took place and recorded the time 

left and registered at the database. During that, the time was 65 ms for the 4G network and 55 for the 

5G network. This leads to the expected average ~17ms one way for the 4G and ~8ms for the 5G. The 
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half travel time includes firewall and internal data routing. While this isn’t a pure network only test it 

indicates the reduction of time for 5G in contrast a 4G connection.  

 
Figure 65: LL Athens - Time required for a device to open a network connection with the server – (A-KPI6) 

The Close/Open scenario was selected to see whether the time to attach to network (data) is different 

(lower) in a 4G network than a 5G network. For this purpose, a test app was developed in Flutter SDK 

that pings a server, detects the network connection time between on and off. Modern versions of Android 

do not allow the program to alter the connectivity, but this app detects the time it takes to reconnect. 

The result for 10-minute test didn't reveal any noticeable difference as the average duration was in the 

order 950-1150 milliseconds on both networks. This duration includes the duration of the phone's 

(Samsung A22 5G 2022) resources, CPU time and data log used while making the connection. No 

noticeable difference for the user while using the mobile application if a connection is resumed, 5G 

versus 4G connection. 

 
Figure 66: LL Athens - 4G / 5G average open close connection testing 

The application build for the truck driver uses video feed from other devices. To test this scenario, we 

used 2 different tools and methodologies. Since the framework the application was built upon (Google 

Flutter, LiveKit GRPC library) doesn't offer data transfer logging we tested following two tools. VLC video 

player was used and large video files of 10-minute videos where loaded on the same machine (laptop 

with 5G Modem RM500Q-AE on the UTP port). During test the 4G network managed to stream 4 videos 

at high bit rate but the forth video didn't load at high enough speed, reaching only 200kbps.The same 

test was performed at a 5G network, 4 videos with no drop-in bit rate. The bit rate includes the actual 

rendered video and the buffered video. This test is an indication of the 5G capabilities of download 

video. More detailed results are presented at the other UCs of LL Athens. 

Screen shots of the application below. To test and gather data, a browser JavaScript was used to load 

videos and record the bytes loaded per seconds. This gave a bit rate with the same results as the above 

test. This usage of the application is the one requiring 5G, to cater multiple drivers with multiple feeds 

and improve the quality of the user experience with multiple streams at a higher resolution. 
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Figure 67: LL Athens - 4G Video feed, indicative VLC video streaming client 

 

 
Figure 68: LL Athens - 5G Video Feed, indicative VLC video streaming client 
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Figure 69: LL Athens - 4G Video feed bitrate of 

concurrent streams 

 
Figure 70: LL Athens - 5G Video feed bitrate of 

concurrent streams 

 

The use of the IoT Fleet Platform is targeted also as mentioned to use the information from connected 

external trucks that operate outside and inside the port to improve the operations within the port (A-KPI4 

and A-KPI5). The key points that reduce the port operations performance are the wait times at customs 

(just outside the port) and inside the port at the loading / unloading next to the containers stack. Here 

we focus on the latter. 

 

In more detail, external trucks arrive to the port stack area to be loaded with a container. In each stack 

area the same port asset (i.e., a straddle carrier) is performing loading/unloading operations to trucks 

sequentially. Hence, when trucks arrive with no coordination to the stack area, there is a growing queue 

of vehicles waiting to be loaded, which increases the wait time of trucks and traffic congestion within the 

port, hence, the mean time of container job (A-KPI5) completion for external trucks. Via the VFI platform 

the loading / unloading (of containers) can be improved by coordinating the external truck depot 

locations (Figure 62) to schedule their trucks to arrive at pre-defined time slots. Based on PCT’s logs, 

the average time of the external truck job completion time is about 40 minutes. To expedite this time, 

the VFI platform exploits the external truck location and estimated time of arrival on the port customs, 

and communicates pertinent information with the aforementioned truck depots so as to delay/reschedule 

their departure from the depots according to the delays experienced within the Port (aggregated at the 

VFI platform). In detail, this is achieved by the following actions. 

• Trucks from nearby depots (Figure 62) are connected to the VFI platform, continuously 

consuming information from the VFI assoicated trucks inside the port 

• VFI associated external trucks calculate their average wait time at the port stack areas 

• Based on the above, trucks at depots, reschedule their departure time accordingly ; However, 

in stack areas, other external trucks (not part of the VFI fleet) can contribute to the delays. In 
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this case information from multiple VFI trucks is taken into account (if available) to provide an 

estimate of the expected wait time. 

 

For the duration of the trials 21 vehicles were enrolled in the VFI platform and 24 routes where identified. 

The routes are depicted on the following map. 

 

 
Figure 71: LL Athens - Common truck routes within the port 

The following map snapshots indicate cases for trucks operating inside the port with higher wait times 

(left), and lower wait times (right). 

 

 
Figure 72: LL Athens - High and low idling duration time 

 
While a reduction of congestion and waiting times at the port can be expected (A-KPI5), the results 

could be further improved by accounting the following. Data from trucks on the Fleet Management 

Platform do not represent the majority of trucks operating within the port; only a small fraction of the 

trucks operating send data to the platform. To streamline and make more efficient the port operations 

all trucks operating must be centrally orchestrated. This is challenging, as external fleet operators utilize 

fleet management platforms from various vendors (with different operational requirements, security 

protocols, etc.), or in some cases trucks are not even connected.  

 

The following table illustrates the average wait times of truck per day that operated inside the port. A 
large number of trucks operating inside the port belong to logistics companies that are not Vodafone 
Innovus customers and the following table indicates a small fraction of the actual wait times per truck. 
Due to the small sample size the idling times may vary significantly. The consumption (A-KPI8) in lt/h is 
measured by trucks with CAN BUS sensors; not all trucks have these sensors so the estimation for all 
trucks is estimated (for Euro 5 Diesel trucks) at 3lt/hour. 
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Truck Day AVG 
Idling Time 
minutes) 

Estimated 
Consumption lt/h 

Truck01 25 1,25 

Truck02 65 3,25 

Truck03 55 2,75 

Truck04 35 1,75 

Truck05 45 2,25 

Truck06 37 1,85 

Truck07 61 3,05 

Truck08 66 3,3 

Truck09 45 2,25 

Truck10 35 1,75 

Truck11 33 1,65 

Truck12 33 1,65 

Truck13 52 2,6 

Truck14 31 1,55 

Truck15 27 1,35 

Truck16 15 0,75 

Truck17 28 1,4 

Truck18 34 1,7 

Truck19 39 1,95 

Truck20 22 1,1 

Truck21 19 0,95 

 
For testing some trucks were asked to delay (via a message to the mobile application) the arrival inside 

the port area (from customer close to the port in areas around 15-20 Km close to port). The following 

table represents trucks with 15-minute delay of arrival.  

 

Truck Day AVG 
Idling Time 
minutes) 

Estimated 
Consumption lt/h 

Previous Average 
Consumption 

% Change In 
Consumption 

     

Truck01 23 1,15 1,25 -10 

Truck03 49 2,45 2,75 -30 

Truck04 36 1,8 1,75 5 

Truck06 42 2,1 1,85 25 

Truck07 57 2,85 3,05 -20 

Truck10 27 1,35 1,75 -40 

Truck11 27 1,35 1,65 -30 

Truck13 47 2,35 2,6 -25 

Truck16 24 1,2 0,75 45 

Truck19 33 1,65 1,95 -30 
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3 EVALUATION IN HAMBURG LIVING LAB 

3.1 LL Hamburg Use Cases 

Hamburg Living Lab is located on the test field for “connected and automated driving” (TAVF) in the City 

of Hamburg. The living lab uses the public 5G network operated by the Deutsche Telekom.  

With the living lab, the potential of leveraging positive environmental impact by using 5G in data 

exchange for traffic management outside the port and the hinterland is demonstrated. The living lab 

deployed a methodology to capture the effect of the traffic infrastructure on regional emissions, making 

them comparable (standardised) by quantifying such influences under defined status of congestion and 

other relevant factors (driver profile, vehicle profile, loading, etc.).  

For Hamburg LL, the following Use Cases are deployed: 

Use Case 8/9: Floating Truck & Emission data (FTED) by 5G IoT devices. 

Use cases 8 and 9 are aimed at collecting Floating Truck & Emission data (FTED) by 5G IoT devices, 

on-board units and nomadic devices. Analysing FTED data according to the ISO-23795 standard [2] 

leads to microscopic emission models per vehicle for the air pollutants CO2, NOx, PM and noise, all 

directly linked to acceleration and energy performance index (API, EPI). But applying the ISO-23795 

standard for carbon footprint monitoring, requires stable data transmission and precise positioning, even 

more when using ISO-23795 for NOx, PM and noise where Newtonian Physics turned out to be non-

linear relative to fuel consumption detection per floating car.  

Use Case 10: Green Light Optimal Speed Advisory (GLOSA)  

Green Light Optimal Speed Advisory (GLOSA) helps drivers to avoid harsh braking, which is one of the 

main causes for increased fuel consumption and CO2 emissions. In 5G-LOGINNOV, it is planned to 

use GLOSA for truck platoons and to showcase a mid-term migration path for using GLOSA in 

Automated Truck Platoons based on 5G technology. From 5G projects and publication [3], it is well-

known that Vehicle-to-Infrastructure (cellular V2X) for vehicle platooning has End-to-End (E2E) latency 

requirements of 20ms time frames and up to 350m minimum ranges, prerequisites, which can only be 

achieved with the URLLC functionalities of the 5G network. Performance requirements for advanced 

driving including collision avoidance (10ms E2E latency) and cooperative lane change (25ms E2E 

latency) have the same low latency communication characteristics and cannot implemented without 5G 

mobile networks. In 5G-LOGINNOV, GLOSA based Truck Platoons will demonstrate a migration path 

towards higher SAE levels of Automation starting with basic functionalities including 5G test cases and 

test runs foreseen in use case 10, GLOSA based Automated Truck Platoons. 

Use Case 11: Sustainable traffic management. 

Sustainable traffic management uses different type of on- and above ground sensors to detect traffic 

density and traffic volume. With well-defined thresholds describing the Level-of-Services 

“free/dense/congested”, traffic management actions are set by public authorities to reduce congestion 

and negative environmental impact. Floating vehicle data is one of these sensors complementing as 

flow sensor the traditional on-street equipment. In 5G-Loginnov, the floating vehicle sensor network use 

5G Services to design a special scenario solution implemented by Swarco and their myCity product in 

the Go-to-Market phase for improving cities’ environmental footprint. 

All use cases include Real-Time Tracking & Enhanced Visibility features for traffic managers by 

monitoring FTED speed profiles and congested road segments, services which once again require 

stable data transmission and precise positioning (5G prerequisite). 
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All Hamburg KPIs defined for evaluation, are horizontal elements of use case 8/9, 10 and 11. As an 

example, we will use the measurement of standstill, which is an important KPI of all three use cases.   

The KPI is measured by ISO-23795-1 compatible smartphone LCMM APP, by tec4u telematic device 

as well as by Continental IoT Box in use case 8/9. But standstill is at the same time heavily influenced 

by Time-to-green traffic light assistance APP GLOSA making it also to an important element of use case 

11 (environment based smart city traffic management). As all KPIs are 5G enabled, the 5G NSA KPIs 

also are horizontally cov are 5G enabled, the 5G NSA KPIs also are horizontally cov are 5G enabled, 

the 5G NSA KPIs also are horizontally covering all use cases. Given this horizontal set-up, the Hamburg 

team executed trials and evaluation according to KPIs, which are 5G enabled, the 5G NSA KPIs also 

are horizontally covering all use cases. Given this horizontal set-up, the Hamburg team executed trials 

and evaluation according to KPIs, which are 5G enabled, the 5G NSA KPIs also are horizontally covering 

all use cases. Given this horizontal set-up, the Hamburg team executed trials and evaluation according 

to KPIs, which are 5G enabled, the 5G NSA KPIs also are horizontally covering all use cases. Given 

this horizontal set-up, the Hamburg team executed trials and evaluation according to KPIs, which are 

5G enabled, the 5G NSA KPIs also are horizontally covering all use cases. Given this horizontal set-up, 

the Hamburg team executed trials and evaluation according to KPIs, which are 5G enabled, the 5G NSA 

KPIs also are horizontally covering all use cases. Given this horizontal set-up, the Hamburg team 

executed trials and evaluation according to KPIs, which are all 5G enabled. This includes the 5G NSA 

KPIs which are also covering horizontally all use cases. It must be mentioned that the KPI based trial 

set-up is different to Koper and Athens given the use case design behind. 

3.1.1 Technical setup 

The LL Hamburg illustrated new functionalities of 5G as MEC, precise positioning as uRLLC can improve 

the efficiency of logistic operations, but on the other hand, also prove that improved 5G network 

functionalities as mMTC and eMBB are essential for any future mobile network application.  

In this context, the LL Hamburg used MEC, 5G enabled precise positioning, uRLLC, mMTC and eMBB 

in its use cases according to their functional abilities.  

MEC and uRLLC 

UC 10 will establish a V2X information system by combining 5G functionalities with GLOSA to enable 

automated truck platooning. The optimised trajectory planning for automated vehicle manoeuvring 

across intersections enabled by real-time information on current and predicted traffic light signalling will 

require reliable connectivity and analytic capability with a low latency below 10ms. By using a MEC 

between the 5G core network and the connected vehicles with reducing network transfer delays to meet 

the specific ultra-reliable and low-latency requirements necessary to serve automated truck platoons. 

The MEC will bring the analytics of the LL-Hamburg uses cases much closer to the connected vehicles 

by processing and combining mission-critical traffic information with manoeuvres of the vehicles and 

infrastructure data from the cloud. Efficient and safe driving inside a platoon requires information being 

shared among the platoon as synchronous as possible. The following vehicles should be on-time aware 

of relevant actions of the leading vehicle (imminent reduction/increasement of speed), otherwise 

unnecessary braking or the dissolvement of the platoon cannot be prevented. 

The uRLLC functionality is furthermore a prerequisite for the required precise positioning used in all four 

use cases of the LL Hamburg. While precise positioning of stationary objects does not require the use 

of 5G technologies, the application on fast-moving vehicles as passenger cars, light, and heavy 

commercial vehicles requires the improved connectivity capabilities of 5G as uRLLC. Under 

consideration of the movement of the platoon, the impact of uRLLC will further be improved by 3GPP 

Release 16, which introduces enhancements of session continuity and therefore reduces the influence 

a handover has on the reliability of low latency services. 

 



 

 70 

Precise Positioning 

The LL Hamburg used 5G enabled precise positioning on lane-level for all use cases. 

This requires an accuracy of the position within an error bound of lateral of 0,57m (0,10m for 95%) and 

longitudinal of 1,40m (0.48m for 95%) on freeways [23]. Therefore, conventual GNSS position 

information will not be sufficient. Secondly, the given position must be provided in a high frequency and 

a low latency to be reliable in a fast-moving vehicle. 

The four use cases will combine uRLLC with the precise positioning service Skylark that provides 

accuracy for the position of up to 0.10m. Figure 73 shows the Skylark service co-branded by Deutsche 

Telekom, a partnership that was already announced in March 2020 [8] with further product details 

published in [7]. It should be noted that network centric Precise Positioning Services do not necessarily 

require 5G and are already available in 4G/LTE. Nevertheless, when it comes to rolling out any type of 

scalable service uptake, e.g., reliable Floating Truck Emission Data use cases (UC8/9) or Collision 

Warning for Automated Truck Platoons in a European Metropolitan Region such as Hamburg, the core 

functions of the 5G network uRLLC, MEC and network slicing become crucial elements of the services 

planned to be implemented in Hamburg. 

 

Figure 73:  Precise Positioning Service as planned to be used in LL Hamburg 

 
5G Security Requirements 

Rising security concerns regarding the transfer of sensitive video surveillance data to the cloud, MEC is 

enabling the processing of video data within the edge of AI-enabled 5G CCTV networks. Instead of 

sending all video surveillance data to the cloud, MEC reduces security risks by processing the data 

locally and transferring filtered data to the cloud. 

Logistic use cases in the Hamburg LL result in deep security, safety, and data protection challenges, 

and require a holistic approach to security. Due to its growing ecosystem complexity, logistic 

applications raise deep security, safety, and data protection concerns. Strong protection is therefore 

mandatory. To provide direction in approaching cybersecurity, several standards, regulations, and 

directives in various stages of maturity are proposed for providing security assurance and guidance.  

Protection mechanisms are needed in: truck/car, network, and back-end tiers; all software and hardware 

levels; and for the full data life-cycle. Some of the main security and privacy points of vigilance are the 

following: 

1. User (people, cars, infrastructure) in the ecosystem have become targets of choice for hackers: the 

number of attacks recently discovered and published is continuously growing. 
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2. Safety and security can no longer be handled separately: failures and threats blend into interaction 

vulnerabilities as trucks are cyber-physical systems. 

3. The connected logistic ecosystem is data-shaped: different data are collected, analysed, and shared 

with all ecosystem stakeholders through multiple paths, and must be protected. A key trade-off for 

protecting data at rest, and in transit, is finding the right balance between data integrity, critical for the 

safety of vehicles and their surroundings, and data privacy, to minimize the amount of collected data. 

Key questions for protection include for each stakeholder the choice of the most relevant tier to deploy 

security mechanisms. Should an end-to-end approach to security be adopted, using cross-cutting 

security management planes, or should tier-by-tier solutions be favoured. The main security 

requirements can be summarized in the following items: 

• Cultivating a cybersecurity culture. 

• Adopting a cybersecurity life cycle for complete development over the life cycle. 

• Assessing security functions through testing phases: self-auditing & testing. 

• Managing a security update policy. 

• Providing incident response and recovery. 
  

Taken together these general guidelines should ensure a secure delivery of services in the ecosystem. 

5G Architecture and technologies 

The LL Hamburg set-up is mainly based on the idea to use telco products (DTAG) as the basis for the 

use case demonstration. Standard 5G in combination with MEC (MobilEdgeX as product) is the network 

backbone for the lab. DTAG connections are also used to link mobile devices (e.g. trucks), RSU’s (e.g. 

traffic lights), and the related backbone infrastructure (e.g. TMS Traffic Management System from 

SWARCO). Dedicated functions, especially with requirements for low network delay, will be deployed in 

a so-called MEC environment. MEC deployment is based on standard procedures like Docker. 

Figure 74 demonstrates this relation between the components in the LL Hamburg. 

  

Figure 74: Hamburg Living Lab overview 
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3.1.2 5G Network Architecture 

The 5G mobile network is a big step to provide many new features for Telco customers. The following 

pictures illustrated the main components for a 5G network. 

 

Figure 75: 5G Main Components 

From a core network evolution perspective, there are two main steps to supporting 5G New Radio (NR). 

The first step – a 5G Evolved Packet Core (EPC) with 5G NR Non-Standalone (NSA) operation – is to 

move forward from the existing EPC. This is the current situation for LL Hamburg (5G production network 

Deutsche Telekom AG - 3GPP R15). 

There are three major advantages for 5G:   

• Massive machine to machine communications – also called the Internet of Things (IoT) that 
involves connecting billions of devices without human intervention at a scale not seen before.    

• Ultra-reliable low latency communications – mission-critical including real-time control of 
devices, industrial robotics, vehicle to vehicle communications and safety systems, 
autonomous driving, and safer transport networks.   

• Enhanced mobile broadband – providing significantly faster data speeds and greater 
bandwidth.  New applications will include fixed wireless internet access for homes, outdoor 
broadcast applications without the need for broadcast vans, and greater connectivity on the 
move. 

  

In the 5G NSA approach, the existing 4G core (EPC) is working as an anchor network mainly for 

signalling purposes. This EPC is combined with new extended radio functions – focused on the 

provisioning of additional mobile bandwidth capabilities (5G New Radio – 5GNR). T-Mobile / Deutsche 

Telekom is using additional frequencies from old UMTS solutions (2,1 GHz band) to offer more capacity 

for the clients. This function (dynamic frequency usage) is adapted from 3GPP R16. 
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Figure 76: 5G Main Components 5G NSA Solution 

Table 29 provides a summary of the 5G technologies to be deployed in the Hamburg Living lab. 

Table 29: 5G Technologies LL Hamburg 

5G Service/Application Deployed 

Radio Access Network Production network 3,6 Ghz / 2.1 Ghz 

Number of cell sites 3,6 GHz more than 20 sites / 2.1 GHz over 98% full coverage in 

Hamburg 

Frequencies used 3.6 GHz / 2.1 GHz 

Frequency Bandwidth 2,1 GHz – 20 MHz  / 3,6 GHz 90 MHz 

Mobile Core 3GPP R15 with DSS 

Virtualised infrastructure only partly 

Orchestrator DTAG internal 

Network Slicing not deployed yet 

MEC available (MobileEdgeX) 

  

3.1.3 Technologies and innovations deployed 

Figure 77 gives an overview of the logistics terminal operation inside the Port of Hamburg. As one can 

see, the river Elbe divides the city of Hamburg into two parts, i.e a northern and southern section relative 

to the river. It can be seen that most of the terminals for container handling are in the southern part of 

the city. For these terminals, the multimodal accessibility for container delivery to the road (motorway) 

and rail (cargo hubs) are crucial for the overall ports’ operation efficiency. This is of special importance 

as 10,000 TEU container ships nowadays are complemented by “XXL-size” cargo ships transporting up 

to 24,000 containers. These “Mega”-Container ships must be navigated safe and fast along the Elbe 

river to Hamburg’s main terminals, located in the southern part of the city. The challenge for such a 

sensitive ecosystem is to ensure an efficient organization along the entire multi-modal transport chain 
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including the specifics of water, road, and rail cargo altogether. Therefore, the City of Hamburg published 

the first I.T.S. policy directive for the promotion of logistics and I.T.S. innovation projects in April 2016 

and extended it in June 2018 [19], with a focus on political support measures linked to the I.T.S. world 

congress organised in October 2021 in Hamburg. 

The strategic balance of conflicting requirements linked to port logistics and low emission zones in the 

city centre, the professional handling of goods’ transport along the multi-modal supply chain as well the 

efficient hand over from Mega-Containerships to last mile hub- and micro-hub warehouses became one 

of important KPIs of the I.T.S. policy directive. 

 

Figure 77: Geographical distribution of Container-Terminals and 5G-Loginnov test Fields 

 In 5G-Loginnov, the contribution to the overall political challenge is planned to be implemented in the 2 

rectangular boxes one can see in Figure 78. The red coloured rectangular box in the upper part of  

Figure 28 shows the location of the Test field for Autonomous and Connected Driving (TAVF) and is 

located directly in the “heart” of the city. The Road network and infrastructure of TAVF belong to the 

traffic authority of the city and all traffic light intersections of the test field are equipped: 

• with “classical” V2X technology using 802.11p WLAN communication standard and 

• with “cellular” V2X technology using 5G Release 16 mobile communication of the Deutsche 
Telekom AG providing 5G services to the public. 

  

With regards to 5G infrastructure aspects in TAVF, Use Case 10 is the most relevant making use of the 

5G features low latency communication (uRLLC) and 4K Video broadband communication (eMBB). To 

navigate a platoon stable and safe within the busy urban road network of Hamburg, avoiding collision 

with Vulnerable Road Users (VRUs) such as pedestrians and bicycles a special APP will be used known 

as GLOSA (Green Light Optimal Speed Advisory). As shown in Figure 78, the innovation lies in the 

uplink of traffic light Signal Phase and Time information combined with the specific Topology Information 

of the Intersection leading to a SPAT/MAP message which is transmitted to the 5G-Mobile Edge Server 

of Deutsche Telekom and from there to the GLOSA APP. Additionally, 5G enabled Precise Positioning 

will be used to enhance the accuracy of the GLOSA-APP and to improve the collision warning alert 

message. It should be mentioned that for 5G enabled GLOSA truck platoons, Vehicle-to-Vehicle 

messages with latency requirements of less than 25 Milli-Seconds are needed as stated by 

Chandramouli and Liebhart [2]. 
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Figure 78: GLOSA APP technology as planned in the TAVF test Field 

The innovative approach planned in Hamburg is to measure the environmental impact of traffic 

management actions linked to traffic light signalling used in 5G enhanced GLOSA (red coloured box in  

Figure 78) as well GHG savings possible when extending Green Light for truck platoons based on I.T.S. 

G5 and 5G enhanced Floating Truck Emission Data analysis offered by T-Systems smartphones, 

Continental IoT devices and tec4u Entruck on-board-units. Additionally, Continental and tec4U will 

implement 5G technologies in their devices and existing applications to be able to enable a native use 

of 5G technologies. The significant savings expected will also be used for business deployment as fuel 

savings give stimulus for logistics service providers to join the project and the overall I.T.S. strategy of 

the city of Hamburg as well as the port of the future implementation plans announced by the Hamburg 

Port Authority (HPA). 

3.2 LL Hamburg KPIs 

KPIs selected by Hamburg LL are not referred to each UC but they all measure aspects of the three 

demonstrated UCs. All KPIs are defined in relation to the 5G technical setup and the use cases 

described in the chapters before. 

KPI ID  H-KPI1  
Measurable objectives and 
indicators  

Increase average truck speed in single vehicle mode with 
equipped vehicles (vehicles for LL Hamburg will be equipped 
with devices for Entruck, Conti IoT and LCMM)  

KPI  Increase average truck speed in single mode up to 5%  

  

KPI ID  H-KPI2  
Measurable objectives and 
indicators  

Reduction of acceleration in single mode (vehicles for LL 
Hamburg will be equipped with devices for Entruck, Conti IoT 
and LCMM)  

KPI  Reduction of average acceleration activities in single mode 
up to 5%  

  

KPI ID  H-KPI3  
Measurable objectives and 
indicators  

Reduction of stillstand time in single mode (vehicles for LL 
Hamburg will be equipped with devices for Entruck, Conti IoT 
and LCMM)  

KPI  Reduction of stillstand time in single mode up to 5%  
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KPI ID  H-KPI4  
Measurable objectives and 
indicators  

Increase average truck speed in platoon vehicle mode with 
equipped vehicles (vehicles for LL Hamburg will be 
equipped with devices for Entruck, Conti IoT and LCMM)  

KPI  Increase average truck speed in platoon mode > 5%  

  

KPI ID  H-KPI5  
Measurable objectives and 
indicators  

Reduction of acceleration in platoon mode (vehicles for LL 
Hamburg will be equipped with devices for Entruck, Conti 
IoT and LCMM)  

KPI  Reduction of average acceleration activities in platoon 
mode > 5%  

   

KPI ID  H-KPI6  
Measurable objectives and 
indicators  

Reduction of stillstand time in platoon mode (vehicles for LL 
Hamburg will be equipped with devices for Entruck, Conti 
IoT and LCMM)  

KPI  Reduction of stillstand time in platoon mode > 5%  

  

KPI ID  H-KPI7  
Measurable objectives and 
indicators  

Reduction of fuel consumption in single mode (vehicles for 
LL Hamburg will be equipped with devices for Entruck, 
Conti IoT and LCMM)  

KPI  Reduction of fuel consumption in single mode up to 10%  

  

KPI ID  H-KPI8  
Measurable objectives and 
indicators  

Reduction of CO2 emissions in single mode (vehicles for LL 
Hamburg will be equipped with devices for Entruck, Conti 
IoT and LCMM)  

KPI  Reduction of CO2 emission in single mode up to 10%  

  

KPI ID  H-KPI9  
Measurable objectives and 
indicators  

Reduction of fuel consumption in platoon mode (vehicles for 
LL Hamburg will be equipped with devices for Entruck, 
Conti IoT and LCMM)  

KPI  Reduction of fuel consumption in single mode up to 20%  

  

KPI ID  H-KPI10  
Measurable objectives and 
indicators  

Reduction of CO2 emissions in platoon mode (vehicles for 
LL Hamburg will be equipped with devices for Entruck, 
Conti IoT and LCMM)  

KPI  Reduction of CO2 emission in platoon mode up to 20%  

  

KPI ID  H-KPI11  
Measurable objectives and 
indicators  

Optimize Energy Performance Index ‘EPI - cl per ton and 
km’ (vehicles for LL Hamburg will be equipped with 
devices for LCMM)  

KPI  Increase value of ‘EPI - cl per ton and km’ up to 10% for 
vehicle trips  
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KPI ID  H-KPI12  
Measurable objectives and 
indicators  

Optimize Acceleration Performance Index ‘API - KWh per 
ton and km’ (vehicles for LL Hamburg will be equipped with 
devices for LCMM)  

KPI  Increase value of API ‘KWh per ton and km’ up to 10% for 
vehicle trips  

  

KPI ID  H-KPI13  
Measurable objectives and 
indicators  

5G bandwidth on urban roads  

KPI  Extended cellular bandwidth on urban roads by 5G network  

  

KPI ID  H-KPI14  
Measurable objectives and 
indicators  

Positioning quality on urban road networks with 5G  

KPI  Positioning quality on urban road networks with 5G by 10 
cm  

  

KPI ID  H-KPI15  
Measurable objectives and 
indicators  

Signal latency in the 5G environment using Mobile Edge 
Computing  

KPI  Average signal latency in the 5G environment will be 
reduced thru Mobile Edge Computing (MEC) to 10 ms 
during vehicle trips  

  

ID  H-KPI16  
Measurable objectives and 
indicators  

Packed Error Rate (PER) in 5G NSA production network  

KPI  Average rate of packed errors during 5G data transmission 
from vehicle to backend. The KPI will be measured while 
performing the different use cases. Reduction of PER by 
10%.  

  

3.3 Technical baseline test setup in 2021 

All Hamburg KPIs listed in chapter 3.2, cover several of the use cases deployed in Hamburg. Therefore, 
the technical set-up in the initial phase 2021 had a focus on collecting data in both single and platoon 
mode with trips from different road segments relevant for Hamburg’s Port operation. This horizontal 
approach overarching all use cases by collecting trips in road networks of relevance is shown in Figure 
78. By equipping rental cars and selected fleets of SME winners Taxi-AD and eShuttle baseline trips 
were registered IT-Backends of T-Systems (LCMM Smartphones), tec4u (entruck) and Continental (IoT-
Backend). Figure 79 depicts a typical in-vehicle set-up and the starting point of the trips in the city centre 
of Hamburg close to the test track TAVF. 
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Figure 79: HKPIs covered by use cases targeting operational efficiency in Hinterland 

The baseline detection covered three periods of dedicated trip records using LCMM, entruck and 
Continental IoT-Box. In March 2021, a total number of 52 trips was recorded followed by 43 trips 
recorded June same year. For the baseline determination, the energy equation of ISO-23795-1 was 
used and Skylark DTAG Precise Positioning Service applied for improved position input in the baseline 
evaluation. For the purpose of comparison, eShuttle and Taxi-Ad trips were recorded with LCMM and 
entruck on-board enabling additional data collection on road segments of the operational importance in 
Hamburg. It has to be mentioned that 2021 was impacted heavily by Covid, including reduced road 
traffic. Nevertheless, port operation and logistics showed the same rush-hour phenomena known 
without Covid, therefore we decided to use 2021 trips recorded as baseline for KPI detection. 

3.4 Use Case trials in 2022  

Compared to 2021, year 2022 was still characterized by Covid and periods of release. The following 

information for each storyboard summarizes the organizational and technical setup, on operated number 

of trips in the TAVF area and provides additional data and screenshots. All storyboards have been 

specified in D3.1 and the storyboards have been successfully performed during the Trials#1 -#3 in 

Hamburg in 2022. 

In general, we have differentiated during the trials between single mode and platoon mode setups. The 

following overview is focusing on this. Chapter 3.4.1 to chapter 3.4.6 give details about the 2022 trials 

comparing applied use case technologies relative to 2021 baseline. For trial #1 phase, a total number 

of 50 trips was recorded followed by trial #2 week counting 40 trips whereas in trial #3 week 85 trips 

were counted. For KPI evaluation, the storyboards defining the trial scenarios distinguished single and 

platoon mode to find impact of GLOSA and Time-to-Green information available inside the vehicle for 

driver assistance. 

3.4.1 Trial #1 Single Mode  

 
Date: 13.09.-15.09.2022 Trial #1 
Processed and by: T-Systems 
Trial #1 Setup: 
# vehicles in the trial: 3 
Vehicle #1 with Entruck, Conti IoT Box, LCMM+Glosa 
Vehicle #2 with LCMM+Glosa 
Vehicle #3 with LCMM+Glosa, Qualipoc and LCMM@Skylark 

# overall trips single mode: 8  
# trips tec4u: 8 
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# trips Conti IoT Box: 8 
# trips with EnTruck, Conti Iot Box, LCMM+Glosa: 8 
# trips with LCMM@Skylark: 8 
#trips Qualipoc (5G and 4G cellular network measurement): 8 

  

3.4.2 Trial #1 Platoon Mode  

Date: 13.09.-15.09.2022 Trial #1 

Processed and by:T-Systems 

Trial #1 Setup: 

  

# vehicles in the trial: 3 

Vehicle #1 with Entruck, Conti IoT Box, LCMM+GLOSA 

Vehicle #2 with LCMM+GLOSA  

Vehicle #3 with LCMM+GLOSA, Qualipoc and LCMM@Skylark (Others) 

  

# trips with EnTruck, Conti Iot Box, LCMM, GLOSA 

# overall trips platoon mode: 11  

# trips tec4u: 11 

# trips Conti IoT Box: 11 

# trips with EnTruck, Conti Iot Box, LCMM: 11 

# trips with LCMM@Skylark: 11 

#trips Qualipoc (5G and 4G cellular network measurement): 11 

  

3.4.3 Trial #2 Single Mode 

Date:04.10.-06.10.2022 Trial #2 

Processed and by:T-Systems 

Trial #2 Setup: 

  

# vehicles in the trial: 3 

Vehicle #1 with Entruck, Conti IoT Box, LCMM+Glosa  

Vehicle #2 with LCMM+Glosa 

Vehicle #3 with LCMM+Glosa, Qualipoc and LCMM@Skylark (others) 

  

# overall trips single mode: 19  

# trips tec4u: 6 

# trips Conti IoT Box: 6 

# trips with EnTruck, Conti Iot Box, LCMM+Glosa: 6 

# trips with LCMM@Skylark: 4 

#trips Qualipoc (5G and 4G cellular network measurement): 8 
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3.4.4 Trial #2 Platoon Mode  

Date: 04.10.-06.10.2022 Trial #2 

Processed and by: T-Systems 

Trial #2 Setup: 

  

# vehicles in the trial: 3 

Vehicle #1 with Entruck, Conti IoT Box, LCMM, GLOSA (HH…) 

Vehicle #2 with LCMM, GLOSA (PS Logi …) 

Vehicle #3 with LCMM, GLOSA, Qualipoc and LCMM@Skylark (Others) 

  

# trips with EnTruck, Conti Iot Box, LCMM, GLOSA 

# overall trips platoon mode: 26  

# trips tec4u: 8 

# trips Conti IoT Box: 8 

# trips with EnTruck, Conti Iot Box, LCMM: 8 

# trips with LCMM@Skylark: 10 

#trips Qualipoc (5G and 4G cellular network measurement): 11 

  

3.4.5 Trial #3 Single Mode 

Date: 22.11.-25.11.2022 Trial #3 

Processed and by: T-Systems 

Trial #3 Setup: 

  

# vehicles in the trial: 3 

Vehicle #1 with Entruck, Conti IoT Box, LCMM +Glosa 

Vehicle #2 with LCMM+Glosa 

Vehicle #3 with LCMM+Glosa, Qualipoc and LCMM@Skylark (others) 

  

# overall trips single mode: 42  

# trips tec4u: 11 

# trips Conti IoT Box: 11 

# trips with EnTruck, Conti Iot Box, LCMM+Glosa: 11 

# trips with LCMM@Skylark: 10 

#trips Qualipoc (5G and 4G cellular network measurement): 8 

  
  

3.4.6 Trial #3 Platoon Mode  

Date: 22.11.-25.11.2022 Trial #3 

Processed and by: T-Systems 

Trial #3 Setup: 

  

# vehicles in the trial: 3 

Vehicle #1 with Entruck, Conti IoT Box, LCMM, GLOSA (HH…) 
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Vehicle #2 with LCMM, GLOSA  

Vehicle #3 with LCMM, GLOSA, Qualipoc and LCMM@Skylark (Others) 

  

# trips with EnTruck, Conti Iot Box, LCMM, GLOSA 

# overall trips platoon mode: 46  

# trips tec4u: 12 

# trips Conti IoT Box: 12 

# trips with EnTruck, Conti Iot Box, LCMM: 12 

# trips with LCMM@Skylark: 9 

#trips Qualipoc (5G and 4G cellular network measurement): 11 

  

3.5 Results & KPI evaluation 

For the sake of KPI evaluation, baseline determination in 2021 had a pool of 95 recorded trips compared 

to 175 trips recorded and available for evaluation from year 2022. All Hamburg KPIs were defined as 

environmental and social benefits, highlighting quantities with regards to vehicles in motion and traffic 

flow characteristics such as average speed, acceleration (braking) and standstill in single and platoon 

mode. After data analysis and elimination of erroneous trip data due to GNSS failure or other obvious 

data mismatch, the traffic related Hamburg KPIs gave the following final result. 

Compared to 2021 recorded baseline, Table 30 shows that KPI expectations were not only achieved 

but impressively exceeded. Average speed was 24% better in single and even 32% better in platoon 

mode, standstill reduced 58% in single and 54% in platoon mode. The KPI threshold of reducing 

standstill by 5% and increasing speed by 5% was much lower than the successful usage of Time-to-

Green and Traffic Light Assistance APP recommendations implemented by the Hamburg project team 

T-Systems, Swarco, tec4u and Continental. It has to be mentioned that traffic flow is difficult to reproduce 

in the sense of reliable statistics. Nevertheless, given the fact that data and trip collection took place in 

different time periods but similar times of the day, baseline in 2021 and trials in 2022 reflect Hamburg’s 

road and traffic condition quite well. 

With regards to acceleration, two different measurement values were recorded and used. One reflects 

braking or negative acceleration behaviour per trip normalized by seconds with speed above zero 

multiplied by 10 for better readability. This improved in single mode, but not >5% in platoon mode. One 

of the reasons might be that human, non-automated vehicle platooning forces drivers to follow, thus, to 

accelerate more than in single mode. Again, our data evaluation proved that normalization of energy 

and acceleration is useful as different vehicles with different weights lead to different savings. Overall, 

results for EPI and API confirm the outstanding >30% improvement relative to baseline determination. 
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Table 30: Overview of the twelve traffic related Hamburg KPIs 

The project team defined three 5G related KPIs which cannot be grouped and compared into 2021 and 

2022 measurements but took place by Rohde and Schwarz and Skylark equipment in 2022. Download 

and upload could be confirmed in the three trial periods, the same holds for the Packed Error Rate (H-

KPI15). For Precise Positioning, improvements down to 10cm levels were found which means lane 

detection for autonomous driving needs such technology for ensuring safety in urban road conditions. 

 

Table 31: 5G NSA network, related Hamburg KPIs 
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4 EVALUATION IN KOPER LIVING LAB 

As part of the 5G-LOGINNOV project novel 5G technologies and cutting-edge prototypes were 

implemented, tested and verified in the Living Lab Koper (LL Koper), which were tailored for the 

particular port environment. These include a 5G NSA system deployed over public infrastructure 

extended with a private core network operating on band n7 (20 Mhz of spectrum) and n78 (100 Mhz of 

spectrum), 5G SA systems as fully private mobile system infrastructure operating on band n78 (20 Mhz 

of spectrum) with support for 5G slicing and assured QoS, MANO-based services and network 

orchestration, Industrial IoT devices, AI/ML based video analytics, drone-based and wearable camera-

based security monitoring, etc. 

 

Figure 80: LL Koper - Deployed system capabilities following a modular design approach. 

The deployment of the 5G mobile network in the Port of Koper was not only a development challenge, 

but also an operational one. Use of high end 5G SA devices were depended on the availability of 

commercial chipsets and 5G products, especially those related to the support of eMBB and mMTC 

features. To add true added value to the deployed 5G systems cloud infrastructure in the port was 

extended with the AI capabilities (GPU cards) and three groups of uses cases with several 

demonstrators were investigated and verified in the port operational environment with the target to 

optimise logistic processes, ensure port security and workers safety. 

 

Figure 81: Deployed Koper LL capabilities using the principles of the open ecosystems. 
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4.1 5G Network deployment and evaluation 

4.1.1 5G NSA Network Deployment 

A 5G NSA (Non-Standalone) private network refers to a type of 5G network architecture that relies on 

existing 4G infrastructure for certain functionalities. In a Non-Standalone 5G network, the 5G radio 

access network (RAN) is deployed alongside the existing 4G core network. The User Plane of the 

Evolved Packet Core (EPC) was strategically deployed on-premise of LL Koper. This local deployment 

facilitates efficient data forwarding and processing within the organization's premises, ensuring low-

latency data transmission. The Control Plane, responsible for signaling and control functions, continues 

to operate within the established 4G public core network infrastructure, ensuring a seamless transition 

to 5G.  

The 5G NSA network in LL Koper is designed exclusively for port (private) operations, providing 

enhanced security and control over network resources and traffic flows. The PGW and SGW (data 

plane) parts of the core network are deployed on-premise in the LL Koper facility, while the HSS and 

MME (control plane) remain part of Telekom Slovenije's public network. Operating on dedicated 

spectrum bands (n78 and n7) allocated to the organization ensures reliable and interference-free 

connectivity within the defined coverage area.  

 

Figure 82: LL Koper – 5G NSA network architecture used in Port of Koper. 

The presented architecture ensures that all mobile data and data flows generated in LL Koper never 
leaves the physical area of the Port of Koper. 

 

 

Figure 83: LL Koper – 5G NSA core network (SGW and PGW element) in Port of Koper cloud facility. 
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Figure 84: LL Koper – 5G NSA RAN deployed in Port of Koper. 

 

4.1.2 List of Key Performance indicators 

 

KPI KPI ID Target Value Measured Values 

Area Traffic 
Capacity 

K-KPI12 
6.25 Mbps Achieved* 

Bandwidth K-KPI14 
LTE 65 MHz + NR 

100MHz 
Achieved 

Connection 
Density 

K-KPI15 
37.500 devices/km2 Achieved* 

Availability K-KPI13 99,98 % Achieved 

End-to-End 
Latency 

K-KPI17 
25 ms Achieved  

One-way Latency  15 ms Achieved 

Table 32: LL Koper – Performance KPIs for the 5G NSA network. 

All of the presented KPIs were measured with the dedicated tools, as presented in the following 

chapters. The only exceptions are K-KPI12 and K-KPI15, which were calculated using the radio network 

planning tools from Telekom Slovenije. 

4.1.3 Methodology and Measurement Tools 

On private 5G-based mobile services provided by the national MNO (Mobile Network Operator) we 

obtained KPIs from the monitoring and control systems of the radio access network that we use for the 

public network. We calculated certain KPIs from raw data. For instance, KPIs such as End-to-End 

Latency and One-way Latency were derived from RTT (Round-Trip Time) measurements or 

measurements between the device and the server. 

To gather performance metrics for the 5G network, we employed the ININ Quality Monitoring System, 

qMON4, within the LL Koper environment. qMON is a suite of network performance testing and 

monitoring tools seamlessly integrated into a centrally managed product designed for mobile, fixed, and 

 
4 The qMON System is a commercial test automation tool from ININ that was extended to support 5G testing capabilities in the 
5G-PPP project 5G-INDUCE, Grant Agreement ID: 101016941. 
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cloud environments. It facilitates end-to-end measurements, realistic load generation, automation of 

testing and measurement, and consists of four main system components (Figure 85):  

• Distributed autonomous qMON agents integrated into mobile 5G User Equipment (UE) or fixed 
devices, including the Samsung Galaxy Series mobile phone and M2M clients, such as 
industrial x86 platforms (iBase and Avalue). Software clients are also packaged as Virtual 
Network Functions (VNF), Virtual Machines (VM), or Docker containers. 

• Centralized cloud-based system management (qMON Manager). 

• qMON Reference Server supporting network (e.g., Iperf servers) and application reference 
points (e.g., ETSI Kepler Web server) to perform end-to-end performance testing.   

• Centralized measurements results (KPIs) collector and database (qMON Collector) supporting 
real-time monitoring and advanced cloud-based analytics (qMON Insight component). The 
analytics are powered by either enterprise-ready MySQL/ms-SQL tools or a cloud-native 
Prometheus-based stack, both supporting Grafana, while advanced post-analytics is provided 
by Tableau.  
 

The system is capable of measuring and collecting over 100 KPIs related to network, services, 

applications testing (DNS, ping, FTP UL, FTP/HTTP DL, iPerf UDP/TCP, web, etc.), as well as 5G and 

radio testing (e.g., RSSI, RSRP, SNIR, TxPower, etc.). Tests and measurements are executed between 

agents or between the agent and a qMON Reference Server.  

In LL Koper, we deployed Reference Servers on Portable NFVI Edge with private 5G SA system, LL 

Koper Cloud, and for additional reference to verify LL Koper outside connectivity, in Telekom Slovenije 

Cloud in Ljubljana. 

 

Figure 85: LL Koper - Deployed qMON 5G Test Automation System   

The qMON system was employed in LL Koper for various tests, including 5G drive testing, end-to-end 

Quality of Service (QoS) and Quality of Experience (QoE) monitoring of network and services, 5G NR 

coverage and performance assessment, and live 5G network and service troubleshooting. The qMON 

agents used included commercial 5G UEs based on Samsung S20, Samsung S21, Samsung S23, and 

OnePlus 9 smartphones, as well as a 5G IoT Gateway from ININ extended with qMON agent capabilities 

that were deployed on stationary locations in LL Koper (STS Crain, Light tower) and on Terberg trucks 

to perform continuous drive testing of the 5G NSA mobile network and to verify performance of a private 

5G SA network.  
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Figure 86: LL Koper - qMON Agent deployment for stationary and drive testing of the 5G NSA mobile 
network – (Left) 5G IoT GW on STS Crane, (Middle) 5G IoT GW on Terberg truck, (Right) Samsung 
S21 on port van. 

As part of the final test for the TRITON use case from Hellenic Drones, we also conducted drone-based 

testing of a 5G NSA mobile network to assess the 5G NR coverage and performance of a mobile system 

in areas that are difficult to access. An example of the results of the drone test, showcasing 5G NR 

coverage with RSRP signal levels, is presented in Figure 87. 

  

Figure 87: qMON assured 5G testing with the Samsung S23 test phone on a drone (figure on the left), 
and the results of the 5G NR coverage in LL Koper (figure on the right). 

 

4.1.4 Results 

To evaluate and confirm the targeted Key Performance Indicators (KPIs) for the deployed 5G NSA 

network, a series of drive and continuous monitoring tests on stationary locations were conducted in LL 

Koper. Following the initial deployment of the 5G NSA network, the first drive test using qMON 5G test 

automation systems (Figure 88) was performed in February 2022 to assess network performance and 

coverage. The analytics of the 5G NR coverage test are presented in Figure 89, revealing that in some 

targeted 5G demonstration areas, the NSA radio layer was lacking. The initial drive test served as input 

for optimizing the deployed 5G RAN, leading to the activation of additional cells operating on band n78. 
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Figure 88: LL Koper - Drive test setup using qMON system on commercial smart phones. 

 

Figure 89:  LL Koper - Drive test results showcasing LTE and NSA coverage on qMON Analytics – 
February 2022. 

 

Figure 90: LL Koper - Drive test results showcasing LTE and NSA coverage on qMON Analytics – 
April 2023. 
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To validate the results of the newly deployed 5G NR cells, an additional drive test was conducted in 

April 2023. As evident in the qMON analytics (Figure 90) the coverage with 5G NR in the targeted 

demonstration area reached 100%. Subsequent to this, a detailed assessment of performance metrics 

was carried out.  Figure 91 illustrates that the 5G NSA channel bandwidth capacity assigned to the 5G 

User Equipments (UEs) is up to 160 MHz of spectrum (K-KPI14 - combined LTE and 5G NR layer). The 

assessment of the 5G NR signal level indicates that the minimum Reference Signal Received Power 

(RSRP) never dropped below -105 dBm, aligning with the planned conditions and ensuring stable radio 

performance even at the cell's edge (end of the container yard). 

 

Figure 91: LL Koper - Drive test results showcasing total available channel BW (K-KPI14).   

 
Figure 92: LL Koper - Drive test results showcasing 5G NR signal level coverage.   

  

4.1.4.1 Continuous 5G drive testing with yard trucks 

To evaluate the deployed 5G NSA network under realistic operational conditions, ININ’s 5G IoT GW 

with the qMON agent was deployed on five yard trucks (Terberg), which are used daily in the port 

operation for the transhipment of containers on the container terminal in LL Koper. When the yard trucks 

are operational the qMON system enables continuous network performance monitoring of the 5G NR 

radio metrics (e.g., RSRP, RSRQ, SINR, TxPower, channel BW and other radio performance metrics 

are sampled with the 1,5 s interval) and data plane performance, including download and upload 

throughput and latency. Performance metrics are collected, showcased, and visualized in real-time 
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directly on the 5G GW management or in the backend analytics. For more in-depth analytics, collected 

metrics are exposed to BI tools such as Tableau. 

   

Figure 93: LL Koper - Yard truck equipped with ININ’s 5G GW and qMON agent (left), placement of 
the 5G GW antennas (middle and right). 

  

Figure 94: LL Koper – Centralized cloud management system showing operational yard trucks with deployed 
qMON agents (left) and 5G GW management system displaying real-time 5G NR performance status (right). 

As an example, the results for the 24-hour 5G drive period for one of the yard trucks are presented in 

the figures below. The Figure 95 depict the 5G drive testing with yard trucks, showcasing 24-hour end-

to-end latency (K-KPI17) and downlink and uplink throughput performance (K-KPI14) on a time graph.  

The measured end-to-end latency (K-KPI17) was 26.4 ms (mean), with a minimum of 8.5 ms and a 

maximum of 83.4 ms. In the case of downlink direction, the achieved speed to the LL Koper cloud was 

177 Mbps (mean), with a minimum of 21 Mbps and a maximum of 360 Mbps. For uplink direction, 

achieved throughput speeds were 39 Mbps (mean), with a minimum of 7 Mbps and a maximum of 143 

Mbps. 

  

Figure 95: LL Koper – 5G drive testing with yard trucks showcasing 24 h RTT (left) and throughput 5G 
(right) performance on a time graph. 
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Since the deployed LL Koper 5G NSA base stations from Telekom Slovenije are shared with commercial 

mobile traffic, observed variations in performance metrics (Figure 95) can be attributed to the current 

load of the RAN and, in the case of downlink and uplink throughput, also to the current radio conditions 

(e.g., RSRP and SINR signal levels) that vary depending on the truck location in the port yard. For the 

RSRP signal level (Figure 96), it is -90.2 dBm (mean), -66 dBm (max), and -115 dBm (min), clearly 

showing changing 5G NR channel conditions that can be observed in demanding industrial 

environments.  

Also, due to the fact that the placement of the 4 antennas supporting 4x4 MIMO on the 5G GW deployed 

in the yard trucks is in a suboptimal location (Figure 93). One 2x2 antenna is inside the metal structure 

in the truck cabin, another 2x2 antenna is on the front truck glass. This also contributes to the 

degradation of the overall 5G NR performance, which could be improved by placing the 4x4 antenna on 

the roof of the yard truck. 

 

Figure 96: LL Koper – 5G drive testing with yard trucks showcasing 5G NR (NSA) performance 
variation on a time graph.  

With the post-analytics of the collected metrics, several aspects of the operational 5G NSA network can 

be visualized on the GIS to be assessed and used for the ongoing optimization of the deployed mobile 

network in LL Koper.  

Some of the used optimisation metrics such as achieved radio signal coverage, operational bands and 

available throughput are presented on the Figure 97, Figure 98, Figure 99 and Figure 104, respectively. 

They showcase combined measured values for all 5 yard trucks for the duration of 2 months.  

 

Figure 97: LL Koper - Evaluating 5G NSA system using drive testing using 5 yard trucks – RSRP level 
network coverage  
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Figure 98: LL Koper - Evaluating 5G NSA system with drive testing using 5 yard trucks – 5G NR 
operational bands. 

  

Figure 99: LL Koper - Evaluating 5G NSA system with drive testing using 5 yard trucks – DL and UL 
throughput on a map. 

   

Figure 100: LL Koper - Evaluating 5G NSA system using drive testing using 5 yard trucks – 
Cumulative DL (left) and UL (right) throughput presented as box plot. 
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Figure 101: LL Koper - Evaluating 5G NSA system with drive testing using 5 yard trucks – end-to-end 

latency (K-KPI17) 

The achieved end-to-end latency (K-KPI17), as depicted in (Figure 101), falls within the expected range, 

being less than 25 ms (mean) for all yard trucks during the two-month testing period. Additionally, the 

one-way delay, calculated by dividing the end-to-end latency by half 12.5 ms (mean), is within the 

targeted KPI range.The detailed steps and optimization methods used present confidential information 

and are restricted to the operational teams of Telekom Slovenije; they are not captured in the report. 

 

4.1.4.2 Continuous 5G network performance monitoring using strategic 
locations in the port 
 

To complement continuous drive testing conducted with yard trucks, ININ’s 5G GW with integrated 

qMON agents were strategically positioned on the port STS crane (Figure 86), and another one in the 

power shelter (Figure 86), and they were utilized for continuous 5G NSA network performance 

monitoring. In this case, ININ’s 5G IoT GW operated with uninterrupted power, as such, the qMON 

system facilitates continuous 24/7 network performance monitoring of 5G NR radio metrics (e.g., RSRP, 

RSRQ, SINR, Tx Power, channel BW, and other radio performance metrics sampled at 1.5s intervals) 

and data plane performance, including download and upload throughput and latency. 

Similar to drive testing with yard trucks, performance metrics are collected and can be showcased and 

visualized in real-time directly on the 5G GW or in the backend analytics. For more in-depth analytics, 

the collected metrics are also exposed to BI tools such as Tableau. 

   

Figure 102: LL Koper – Power shelter equipped with ININ’s 5G GW and qMON agent (left), Centralized 
management system showing operational qMON agent (middle) and 5G GW management displaying 
real-time 5G NR performance status (right). 
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Results for the 7-day period of the deployed 5G GW operating in continuous mode (24/7) at the power 
shelter are presented in the figures below. Figure 103 depicts the 5G NR results for a stationary 
deployed 5G GW, showcasing the 7-day radio network performance (RSRP, RSRQ, SINR, TX Power) 
on a time graph: 
 

• NR RSRP values: -98.5 dBm (mean), -91 dBm (max), -104 dBm (min); 

• NR SINR values: 0.33 dB (mean), 1.20 dB (max), 0 db (min); 

• NR RSRQ values: -12.5 dB (mean), -8 dB (max), -18 db (min); 

• NR Tx Power values: 18.5 dBm (mean), 21 dBm (max) -32 dBm (min). 
 
From a radio perspective (with a mean RSRP value of -98 dBm), the 5G GW is located on the 5G NR 
cell edge. Consequently, the overall end-to-end performance is degraded, as observed in the achieved 
values for the downlink and uplink throughput testing (Figure 104). However, due to the fact that the 5G 
GW is positioned at a stationary location, 5G NR signal is uniform, more stable, and predictable 
compared to the 5G drive test results with yard trucks (Figure 96).  

 

 

Figure 103: LL Koper – Continuous 5G NSA testing with a stationary deployed 5G GW, showcasing 
5G NR performance over 7-day period. 

Figure 104 depicts the end-to-end throughput results for a stationary deployed 5G GW, showcasing the 

7-day performance of the 5G NSA network (uplink and downlink throughput between the 5G GW and 

LL Koper cloud) presented on a time graph: 

• Downlink speed values: 225 Mbps (mean), 345 Mbps (max), and 6.97 Mbps (min); 

• Uplink speed values: 21.0 Mbps (mean), 43.4 Mbps (max), 4.81 Mbps (min). 

The achieved maximum download and upload speed is limited due to the severely degraded 5G NR 
signal at the cell edge and as a consequence, more robust modulation and coding scheme need to be 
applied to the 5G NR radio. Variations in the throughput that are less than maximum can be attributed 
to the utilisation of the base station with the commercial traffic, as the base station is shared. Daily 
network utilisation cycles can be also clearly seen, where during the night, the network is less utilised 
and as such, the download and upload performance is higher than during the day cycles. 

 

 

 

LTE layer performance 

5G NR layer performance 
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Figure 104: LL Koper – Continuous 5G NSA testing with a stationary deployed 5G GW, showcasing 
downlink and uplink throughput over 7-day period. 

Figure 105 depicts the end-to-end latency results for a stationary deployed 5G GW, showcasing the 7-
day performance of the 5G NSA network (Round-Trip Time between the 5G GW and LL Koper cloud) 
presented on a time graph: End-to-end latency (K-KPI17): 15.5 ms (mean), 80.6 ms (max), 8.10 ms 
(min). In addition, the percentage of the successful ICMP tests during the observed 7 day period shows 
an reliability of the 5G NSA of 100% (K-KPI18). 
 
End-to-end latency of 15.5 ms presents a promising result for 5G NSA network operating in TDD mode 
and a 5G GW placed on the cell edge. As in the case of drive testing, the variation in the end-to-end 
latency can be attributed to the utilization of the 5G NR with commercial traffic, where 5G UEs compete 
for the same radio resources. 
 

 
Figure 105: LL Koper – Continuous 5G NSA testing with a stationary deployed 5G GW, showcasing 

end-to-end latency over 7-day period. 

Figure 106 depicts the results for a stationary deployed 5G GW, showcasing the 7-day performance of 
the 5G NSA network for the browser application accessing web services deployed on a LL Koper cloud. 

Web MOS is a metric that assesses quality of experience for the users using web applications5. 

 
5 A novel user satisfaction prediction model for future network provisioning https://link.springer.com/article/10.1007/s11235-013-
9853-4 
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Performance is assessed by Web MOS measurement and is presented on a time graph. Web MOS 
factor values: 4.17 (mean), 4.37 (max), 3.32 (min). In addition, the percentage of the successful Web 
tests during the observed 7-day period shows an reliability of the 5G NSA of 100% (K-KPI18). 
 
Variation in Web MOS can be mainly attributed to the needed download time of a complex web 
application and is tightly dependent on the observed variation in the download throughput. 
 

 

Figure 106: LL Koper – Continuous 5G NSA performance testing with a stationary deployed 5G GW, 
showcasing web-based application performance over 7-day period. 

4.2 UC1: Management and Network Orchestration platform 
(MANO) 

As already mentioned in the initial project review, the name of the use case UC1 is not descriptive 

enough of the all-actual targets, but it remained in its original form due to alignment with the signed GA. 

4.2.1 Description and Motivation 

The motivation behind UC 1 was to improve the 5G capabilities and network performance in LL Koper 

by deploying a Private 5G system operating in SA mode and an Industrial IoT Gateway. This gateway 

is designed to support both NSA and SA networks, facilitating the connection of non-5G devices (e.g., 

UHD cameras) and other sensors. With the 5G SA we target to achieve better network performance 

(e.g., low latency) and to support more advanced network services, such as eMBB and mMTC, for the 

most demanding port use cases. The Private 5G system and the Industrial IoT Gateway, developed by 

ININ, enabled LL Koper to create a compact and flexible private network that can be deployed, 

configured, and managed in a cloud-native way, using container-based technologies and orchestration 

mechanisms. Deployed system supports slicing features that allows us to allocate dedicated network 

resources and parameters for different types of traffic and IoT devices.  

ININ deployed and tested a Private 5G System designed and developed for the critical-communications 

verticals in the sister ICT 42 project, Int5Gent6. The motivation for developing the private 5G system 

was to provide a compact and flexible solution for high-performance and reliable connectivity needed in 

critical infrastructures, such as ports. ININ’s Private 5G, called MobileONE, is a compact 5G network 

that operates in 5G SA mode and integrates 5G RAN and 5G Core Network capabilities (up to 3GPP 

Release 17 specifications). It provides a compact NFVI environment (x86 based Network Appliance, 1U 

 
6 Integrating 5G enabling technologies in a holistic service to physical layer 5G system platform, Grant agreement ID: 957403, 
https://int5gent.eu/. 
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size) that can run 5G RAN and 5G core network functions on a single Kubernetes instance. Kubernetes 

platform supports container-based deployment of 5G network functions, MANO-compliant orchestration 

and other cloud-native mechanisms (e.g., self-healing, scaling etc.). ININ deployed the 5G CN and 5G 

RAN as network functions (NF) and corresponding network services (NS) using Kubernetes deployment 

principles that can be orchestrated by MANO/OSM network orchestrator. 

One of the main challenges that we faced when the 5G-LOGINNOV project started (September 2020) 

was the limited availability on a market of industrial-grade IoT gateways that supported 5G operation in 

SA mode. This mode offers better system performance (e.g., latency, uplink bandwidth), reliability, and 

security for IoT applications than NSA mode. Therefore, ININ decided to extend its rMON IoT platform7 

with a new gateway that supports 5G SA capabilities and other advanced functions such as eMBB and 

mMTC slicing. These functions enable LL Koper to deliver assured bandwidth with slicing support and 

low latency for eMBB applications, as well as M2M connectivity for mMTC applications. ININ’s rMON 

IoT platform also incorporates a centralised cloud-based management and device monitoring platform 

that was extended with cloud-native capabilities and options for MANO/OSM-based orchestration. This 

allows us to deploy, configure, and manage 5G-based IoT network functions and services in a flexible 

and scalable way, using container-based technologies and optional orchestration mechanisms. The new 

gateway platform incorporates also advanced functions, such as compute and storage capabilities that 

can be used for running containerised application (e.g., running ININ’s 5G test automation systems 

qMON8) at the far-edge. As such prepared gateway system was used to support several use cases in 

the LL Koper (UC5, UC6, UC3) and to support automation of 5G performance monitoring of the deployed 

NSA and SA mobile networks in the LL Koper.  

Today, in addition to the 5G-LOGINNOV project, the developed Industrial gateway platform from ININ 

is used in several 5G-PPP projects. To support 5G connectivity for the railway systems (Int5gent 

project9) to assure 5G network performance testing of the smart factory (5G-INDUCE project10) and the 

smart port (5G-VITAL project11) and as a platform that was extended with the NEF and CAPIF 

capabilities in the 5G-EVOLVED project12. 

4.2.2 Use Case Setup 

Private 5G system was prepared with the options to expose the key 5G RAN and Core network 

parameters (e.g., MCC/MNC, Band, BW, Cell ID, PCI) using virtual network function descriptors (VNFD) 

and network service descriptors (NSD). Private 5G System was used to demonstrates the potential of 

5G for various use cases and scenarios in the operational port environment that require advanced 5G 

security services, low latency communications or high throughput requirements in the uplink direction, 

i.e., Drone and wearable cameras real time video streaming.   

 
7 https://www.iinstitute.eu/pdf/Brosura_rMON-Maj2022.pdf 
8 https://www.iinstitute.eu/pdf/Brosura_qMON-2022.pdf 
9 https://www.int5gent.eu/ 
10 https://www.5g-induce.eu/ 
11 https://www.vital5g.eu/ 
12 https://evolved-5g.eu/ 

https://www.int5gent.eu/
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Figure 107: LL Koper - ININs Private 5G SA System components. 

Due to the fact that, in Slovenia, the foreseen tender for the private network deployments targets 

dedicated frequencies in the range of 2300 – 2320 MHz and 3400 – 3420 MHz that could be also used 

for the 5G network deployment in the Port of Koper, the RRU with n78 band and a channel bandwidth 

of 20 MHz operating in TDD mode was the primary operational profile for the deployment of the private 

5G RAN in the LL Koper.  

 

Figure 108: LL Koper - Private 5G System testing in Luka Koper/Port of Koper (April 2022). 

Prepared (figure left) and deployed (right) Private 5G System in LL Koper showcasing portability and 
flexibility of the solutions – System testing in April 2022. Key capabilities of the Private 5G mobile system 
are presented in the tables that follows.  

5G NR | SA
n78 | TDD 
BW 50 Mhz
2x2 MIMO
20 W per port

Weight 100 kg
Power (min) 220 W
Baremetal Setup time 30 min
5GS Deployment time 2 min
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gNb components Features supported up to the 3GPP release 17 

5G NR BBU 
 

Prepared and deployed 
as a single container 

All 5G FDD and TDD bands (sub-6G Bands) 

Slicing eMBB, mMTC, with QoS Flows (3GPP 5QI) 

NG interface (NGAP and GTP-U) to 5GC 

XnAP gNb-gNb 

Up to QAM 256 DL 
UP to QAM 256 UL 

DATA SCS: 15 and 30 KHz 
SBS SCS: 15 and 30 KHz 

5G NR RRU 
 

N78, 
directional and 

omnidirectional antenna 
options were verified 

 

up to 20W per port 

Up to 50 MHz BW 

2x2 MIMO DL 
2x2x MIMO UL 

Table 33: LL Koper - 5G NR capabilities of the Private 5G SA System. 

 

5G CN Component Features supported up to the 3GPP release 17 

Compact 5G core 
network 

 
 Prepared and deployed 

as a single container 

AMF, AUSF, SMF, UPF, UDM and 5G-EIR 

Encryption | AES, SNOW3G, ZUC 

Encrypted SUPI/IMSI registration (ECIES) 

USIM Auth | XOR, Milenage, TUAK 5G-AKA 

Slicing with QoS Flows (3GPP 5QI) 

Interfaces | NG (NGAP and GTP-U) 

Local CMAS and ETWS messages 

Table 34: LL Koper - Core network capabilities of the Private 5G SA System. 

The following figures present the private 5G system management capabilities that show some of the 

deployed configuration and system provisioning capabilities. 
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Figure 109: LL Koper - Private 5G SA System management overview of the operational system 
components. 

   

Figure 110: LL Koper - Private 5G SA System management with exposed key configuration 
parameters of the 5G NR (left), 5G core network (middle) and user provisioning (right). 
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Figure 111: LL Koper - Kubernetes management showing deployed 5G BBU, 5G CN and qMON 
system pods. 

In the LL Koper, a comprehensive ecosystem has been established, featuring not only the Private 5G 
system but also the rMON IoT platform equipped with developed Industrial 5G Gateways to support the 
activities of UC1, UC3, and UC6. The components of the rMON IoT platform, including the rMON 
Manager and rMON collector functions (Figure 111), were prepared using the cloud-native capabilities 
of Kubernetes, complemented by the support of MANO/OSM orchestration.  

 

  
Figure 112: LL Koper - Cloud-based management of the deployed 5G IoT Gateway showcasing a map 

view (figure on the left) and 5G GW status (figure on the right). 

  
Figure 113: LL Koper - Local 5G Gateway management showcasing device status (figure on the left) 

and connected STS camera video stream (figure on the right). 

To ensure seamless connectivity, ININ’s 5G Gateways were strategically deployed on the STS cranes 
(Figure 114) and light towers (Figure 115). This placement guarantees the continuous transmission of 



 

 102 

video streams from the deployed UHD cameras, contributing to automating container transhipment 
and enhancing surveillance monitoring. 
 

     
Figure 114: LL Koper - Deployment of the shelter on the STS crane (figure on the left) with Industrial 

5G GW inside (figure on the middle) and connected UHD camera (figure on the right). 

 

     
Figure 115: LL Koper - Light tower with deployed UHD camera (figure on the left), power shelter 

(figure on the middle) with deployed 5G GW (figure on the right). 

Furthermore, additional ININ’s 5G Gateways were strategically integrated into the Terberg trucks. 
These deployments serve a dual purpose: first, they provide a robust platform for the deployment of 
qMON 5G test automation capabilities, showcasing continuous 5G network monitoring capabilities 
within the LL Koper. Second, they play a pivotal role in facilitating the deployment of cameras for the 
worker safety use case (UC3), a collaborative effort with LL Athens as part of cross-Living Lab activities. 
 
The synergy between the Private 5G system and the rMON IoT platform, augmented by the strategic 
deployment of ININ's 5G Gateways, exemplifies a holistic approach to connectivity and automation in 
the Living Lab environment. This integrated solution not only supports specific use cases but also lays 
the foundation for a dynamic and adaptive infrastructure, fostering innovation and efficiency in diverse 
operational scenarios. 
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Figure 116: LL Koper - 5G IoT Gateway deployment on Terberg truck (figure on the left) used for drive 

testing and 5G performance analytics in the port (figure on the right). 

Demonstrations of ININ's Private 5G system and the developed 5G Industrial Gateway were conducted 
on several occasions for industrial partners and Slovenian governmental officials. Notable events 
included the AKOS Industrial event (Agency for Communication Networks and Services of the RS) in 
September 2023 in Ljubljana (Figure ) and the 5G-LOGINNOV final event in Luka Koper/Port of Koper, 
Slovenia, in November 2023 (Figure 117). On both occasions, national TV (www.rtvslo.si) was present, 
reporting the events for the news13. 

 

     

Figure 117: AKOS Industrial event14 in Ljubljana, Slovenia - Displaying the capabilities of private 5G 
SA systems (figure on the left and in the middle) and reporting on national TV (RTV Slovenija)15 (figure 

on the right). 

 
13 RTV Slovenia show about the 5G and 6G: https://365.rtvslo.si/arhiv/znanost-in-tehnologija/174989963 
14 https://www.linkedin.com/posts/internet-institute-ltd_5g-5g-6g-activity-7114690731109187584-
A2Bi?utm_source=share&utm_medium=member_desktop 
15 https://365.rtvslo.si/arhiv/znanost-in-tehnologija/174989963 
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Figure 118: Final 5G-LOGINNOV event in Koper, Slovenia - Showcasing capabilities of private 5G SA 
systems. 

4.2.3 List of Key Performance Indicators 

The presented table summarizes 5G network and deployment KPIs defined for the UC1 in (5G-

LOGINNOV, D1.4: Initial specification of evaluation and KPIs, 2022), the targeted values, and the final 

measured values achieved during testing and verification in LL Koper. Detailed explanations of the tools 

used, test methodologies, and final measured values, along with results comments, are presented in 

the chapters that follow.  

 

System KPI KPI ID Target Value Measured Value 

Dedicated 
private 5G 
SA mobile 

system 

Bandwidth K-KPI14 Downlink Depends on the 
used 5G NR channel 

bandwidth and 
assigned TDD profile    

Bandwidth K-KPI14 Uplink  Depends on the 
used 5G NR channel 

bandwidth and 
assigned TDD profile    

End-to-End Latency K-KPI17 20 ms Achieved 

5G IoT 
backend 
system  

Components Onboarding 
and Configuration (Backend) 

K-KPI1 5 min (per 
single 

component) 

Achieved 

Deployment Time (Backend) K-KPI2 15 min Achieved  

Time to Scale (Backend) K-KPI3 5 min Achieved 

Service Availability 
(Backend) 

K-KPI4 99,99 % Achieved 

Components Onboarding 
and Configuration (Agent) 

K-KPI5 3 min (per 
single 

component) 

Achieved 

Deployment Time (Agent) K-KPI6 5 min Achieved 
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System KPI KPI ID Target Value Measured Value 

Dedicated 
private 5G 
SA mobile 

system 

Components Onboarding 
and Configuration (Backend) 

K-KPI7 10 min (per 
single 

component) 

Achieved  

Deployment Time (Backend) K-KPI8 20 min Achieved 

Time to Scale (Backend) K-KPI9 10 min Achieved 

Service Availability 
(Backend) 

K-KPI10 99,99 % Achieved 

Slice Reconfiguration 
(Backend) 

K-KPI11 5 min Achieved 

Table 35: LL Koper - UC1 Key Performance Indicators 

4.2.4 Methodology and Measurement Tools 

To verify the developed and deployed 5G systems, several functional, interoperability, and performance 

tests were initiated, and dedicated tools were prepared and integrated into the LL Koper. 

For 5G NR, 5G core network, and end-to-end performance testing, ININ’s qMON systems were utilized 

to assess several radio performance metrics (e.g., RSRP, RSRQ, SINR, CQI, channel BW, MIMO mode, 

etc.) and data plane performance, including download and upload throughput, latency. For more details 

about the qMON system please check the chapter 4.1.3. Based on the test type different qMON agent 

form factors were used, such as integrated qMON agent software on the ININ’s Industrial IoT GW 

(Figure 119), a dedicated smartphone with the qMON agent application, and RPi-based qMON agent 

for performance and application-based testing on the Nokia FastMile 5G gateway. To support different 

test methodologies qMON reference server instances were deployed on the cloud in LL Koper and on 

the same Edge Kubernetes NFVI as the private 5G system. 

 

Figure 119: LL Koper - qMON agent analytics integrated with industrial IoT Gateway 

Management and debugging capabilities of the private 5G system included integrated 5G NR real-time 

performance tracing (CQI, MCS, retransmits, bitrate, MIMO mode, PHR levels) and 5G system 
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signalling tracing intercept capabilities for capturing MIB, SIB, RRC, AS and NAS-related signalling 

messages.  

  

Figure 120: LL Koper - Real-time 5G NR performance monitoring (figure on the left) and signaling 
debugging capabilities of the private 5G system. 

Similar capabilities were developed and applied to the ININ’s Industrial IoT GW, with integrated 5G NR 

real-time performance monitoring (RSRP, RSRQ, SINR, TX Power) and network debugging capabilities 

(Figure 120).  

  

Figure 121: LL Koper - Real-time 5G NR status monitoring (figure on the left) and 5G NR modem 
debugging capabilities of the Industrial IoT GW. 

Additionally, the management and debugging capabilities of Kubernetes (Figure ) and MANO/OSM 

(Figure ) were employed to assess the private 5G system and IoT backend system components' 

deployment times and other operational metrics.  

 

Figure 122: LL Koper - Kubernetes management showcasing the status of deployed private 5G 
system components. 

 



 

 107 

 

Figure 123: LL Koper - MANO/OSM management showcasing the status of deployed NSDs for the 
private 5G system components. 

 

Figure 124: LL Koper - ININ's local Harbor repository with private 5G system components. 

While some tests, such as the assessment of system deployment times, were performed manually, 

others supported by dedicated 5G test automation tools like ININ’s qMON system, enabled full 

automation of test procedures. As such, several million KPI samples were taken during the duration of 

the 5G-LOGINNOV project, enabling the adoption of an iterative test and development approach. Test 

results were conveyed to the DevOps team, modifications were made to the systems, and the same 

tests were repeated. 

4.2.5 Results 

In the following sections, the results of the functional, interoperability, and performance testing for the 

utilized Private 5G system and the developed and deployed Industrial 5G IoT system from ININ are 

provided.  

4.2.5.1 Deployment and operational KPI for a private 5G SA mobile system 

We conducted a series of tests to measure the deployment and operational KPIs of private 5G SA 

mobile system, which was deployed on the Edge NFVI with the support of the MANO/OSM orchestrator. 

The mobile system consists of two main components: a BBU and a 5G CN. The test procedures included 

the following KPIs: 

- Components Onboarding and Configuration (Backend): This KPI presents the time it takes 

to onboard and configure a single component of the system (i.e., BBU or 5G CN). The achieved 

values for the BBU and the 5G CN were 5 minutes and 4 minutes, respectively, which are faster 

than the target value and indicate a high optimisation of the process. 
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- Deployment Time (Backend): This KPI presents the elapsed time from the moment the 

deployment is started via the orchestrator until the system is ready to use. The achieved values 

for the BBU and the 5G CN were 2 minutes and 30 seconds, respectively, which are much 

shorter than the target value and indicate efficient deployment. 

- Time to Scale (Backend): This KPI presents the elapsed time from the moment the scaling 

request is triggered until the component is scaled and ready to use. The achieved values for the 

BBU and the 5G CN were 3 minutes and 2 minutes, respectively, which are shorter than the 

target value and indicate flexibility and adaptability of the private mobile network. 

- Service Availability (Backend): This KPI presents the percentage of successful service tests 

(WEB) to the reference service endpoint over a period of time. The measured value for the 

system was 99.99865%, which is higher than the target value and indicates a reliable and stable 

system. 

- Slice Reconfiguration (Backend): This KPI presents the time it takes to reconfigure the slices 

of the system, which are logical networks with different performance and QoS parameters for 

different types of traffic and 5G UEs. The achieved values for the BBU and the 5G CN were 3 

minutes and 2 minutes, respectively, which are faster than the target value and indicate a 

responsive and customizable system. 

Management and debugging capabilities of the used Kubernetes and MANO/OSM systems were 

employed to assess the deployment times and other operational metrics of the private 5G system 

components. Several manual runs were triggered to collect observed metrics. 

The results show that private 5G SA mobile system achieved or surpassed the target values for all the 

deployment and operational KPIs, demonstrating its high performance and suitability. 

System KPI KPI ID Target Value Achieved Value 

Dedicated 
private 5G 
SA mobile 

system 

Components 
Onboarding and 

Configuration 
(Backend) 

K-KPI7 10 min (per 
single 

component) 

BBU: 5 min 
5G CN: 4 min 

Deployment Time 
(Backend) 

K-KPI8 20 min BBU: 120 s 
5G CN: 30 s 

Time to Scale 
(Backend) 

K-KPI9 10 min BBU: 180 s 
5G CN: 120 s 

Service Availability 
(Backend) 

K-KPI10 99,99 % 99,99865 % 

Slice Reconfiguration 
(Backend) 

K-KPI11 5 min BBU: 180 s 
5G CN: 120 s 

Table 36: LL Koper - Deployment and operational KPIs for a private 5G SA mobile system 

4.2.5.2 Deployment and operational KPI for 5G IoT backend system 

A series of tests were conducted to assess the deployment and operational KPIs of 5G IoT backend 

system, developed to support industrial IoT applications and services in the LL Koper. The 5G IoT 

backend system comprises three main components: a Manager, a Reference, and a Reporter. The 

Manager oversees the management and monitoring of IoT devices and the network, while the Reference 

provides a service endpoint for IoT devices to connect and communicate. The Reporter collects and 

reports data and performance metrics from IoT devices and the network. Additionally, the system 

includes an Agent, a software component running on IoT devices enabling interaction with the backend 

system. 
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The tests covered the following KPIs: 

- Components Onboarding and Configuration (Backend): Measures the time to onboard and 

configure a single backend system component. Manager, Reference, and Reporter component 

achieved 3 minutes, 5 minutes, and 5 minutes, respectively, indicating a high optimisation of 

the onboarding process. 

- Deployment Time (Backend): Measures the time from orchestrator initiation to backend system 

readiness. Manager, Reference, and Reporter components achieved 120 seconds, 60 seconds, 

and 180 seconds, respectively, demonstrating efficiency of the deployment procedure. 

- Time to Scale (Backend): Measures the time from scaling request initiation to backend 

component readiness. Manager, Reference, and Reporter component achieved 140 seconds, 

80 seconds, and 200 seconds, respectively, showing a flexible and adaptable system. 

- Service Availability (Backend): Measures the percentage of successful service tests (WEB) to 

the reference service endpoint over time. Backend system achieved 100%, indicating a highly 

reliable and stable system. 

- Components Onboarding and Configuration (Agent): Measures the time to onboard and 

configure a single agent on the IoT device. Agent achieved 150 seconds, showcasing high 

process efficiency. 

- Deployment Time (Agent): Measures the time from orchestrator initiation to agent readiness. 

Agent achieved 120 seconds, demonstrating quick and easy deployment. 

Management and debugging capabilities of the used Kubernetes and MANO/OSM systems were 

employed to assess the deployment times and other operational metrics of the 5G IoT backend system 

components. Several manual runs were triggered to collect observed metrics. 

The results demonstrate that our 5G IoT backend system meets or exceeds the target values for all 

deployment and operational KPIs, highlighting its high performance and suitability for various IoT 

applications and services over the 5G network. 

System KPI KPI ID Target Value Achieved Value 

5G IoT 
backend 
system  

Components Onboarding 
and Configuration (Backend) 

K-KPI1 5 min (per 
single 

component) 

Manager: 3 min 
Reference: 5 min 
Reporter: 5 min 

Deployment Time (Backend) K-KPI2 15 min Manager: 120 s 
Reference: 60 s 
Reporter: 180 s 

Time to Scale (Backend) K-KPI3 5 min Manager: 140 s 
Reference: 80 s 
Reporter: 200 s 

Service Availability 
(Backend) 

K-KPI4 99,99 % 100 % 

Components Onboarding 
and Configuration (Agent) 

K-KPI5 3 min (per 
single 

component) 

150 s 

Deployment Time (Agent) K-KPI6 5 min 120 s 

Table 37: LL Koper - Deployment and operational KPIs for 5G IoT backend system. 
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4.2.5.3 ININ’s 5G IoT GW functional testing 

We performed various functional tests on deployed Industrial IoT Gateway to verify its 5G capabilities 

and performance in different scenarios and configurations in the port environment. The tests included 

the following aspects: 

- 5G NR transmission mode: ability to transmit and receive data using different 5G NR modes, 

such as FDD and TDD. 

- 5G NR MIMO mode: support for MIMO options, which enhances the data rate and reliability of 

5G NR signals by using multiple antennas. 

- Supported 3GPP Access: GW compatibility with different 3GPP access technologies, such as 

5G SA, 5G NSA, LTE, HSPA. 

- GNSS: Support for global navigation satellite system (GNSS) services, such as GPS, 

GLONASS, and Galileo, which provide accurate positioning and timing information. 

- APN: ability to connect to different access point names (APNs), which identify the network 

services and settings for the gateway's data connection. 

- BW limiting: ability to limit the bandwidth of 5G NR connection, by setting a maximum value. 

- 5G NR Slicing - Network Delegated: support for 5G NR slicing, which allows the creation of 

multiple logical networks with different performance and quality of service (QoS) parameters on 

the same 5G NR and 5G CN network. We used the network delegated approach, which means 

the 5G CN assigns the slice parameters to the gateway based on its service profile in UDM. 

- Mobile Network Type (Test, Private, Public): ability to connect to different types of mobile 

networks, such as test, private, or public, depending on the targeted use case. 

- Combining 4G and 5G carriers (LTE CA + 5G NR): ability to combine 4G and 5G carriers, 

using LTE carrier aggregation (CA) and 5G NR dual connectivity (DC), to achieve higher data 

rates. 

- Cell Broadcast Alert: ability to receive and display broadcast alert messages, such as 

emergency or safety notifications, initiated on the management of the private 5G system. 

We evaluated the gateway's performance and functionality in different use cases and scenarios (UC3, 

UC5, UC6), such as eMBB and mMTC, in the real port environment. The table that follows presents a 

summary of the test results. 

ININ 5G IOT GW functionality Options Result 

5G NR transmission mode TDD 
FDD 

Pass 
Pass 

5G NR MIMO Mode DL SISO 
UL SISO 
DL 2x2 MIMO 
UL 2x2 MIMO 
DL 4x4 MIMO 
UL 4x4 MIMO 

Pass 
Pass  
Pass 

Not available 
Pass 

Not available 

Supported 3GPP Access 5G SA 
5G NSA 

Pass 
Pass  



 

 111 

ININ 5G IOT GW functionality Options Result 

4G 
3G 

Pass 
Pass 

GNSS GPS, GLONAS, Galileo Pass 

APN Auth none  
PAP Authentication  
CHAP Authentication 

Pass  
Pass 
Pass 

IP Assignment Dynamic IP  
Static IP 

Pass 
Pass 

BW limiting APN Aggregated Max BW Pass 

5G NR Slicing - Network Delegated eMBB, SST 1, SD 0 
mMTC SST 3, SD 10 
GBR slice with strict BW 
non-GBR slice  
non-GBR slice with BW limit 

Pass 
Pass 
Pass 
Pass 
Pass 

Mobile Network Type 
(Test, Private, Public) 

Private: 99901 
Test: 00101 
Commercial: 29341 
Commercial: 29340 
Commercial: 20201 
Commercial: 22288 
Commercial: 24004 

Pass 
Pass 
Pass 
Pass 
Pass 
Pass 
Pass 

Roaming Verified at several EU 
Operators 

Pass 

Combining 4G and 5G carriers (LTE CA + 
5G NR) 

Verified at commercial 
Operators  

Pass 

NR band n78 (SA) 20 MHz 
30 MHz 
40 MHz 
50 MHz 
100 MHz 

Pass 
Pass 
Pass 
Pass  
Pass 

NR band n77 (SA) 20 MHz 
30 MHz 
40 MHz 
50 MHz 
60 MHz 
90 MHz 
100 MHz 

Pass 
Pass 
Pass 
Pass  
Pass 
Pass  
Pass 

NR band n28 (SA) 20 MHz Pass 

5G NSA FDD bands Supporting 11 FDD bands  Pass 

5G NSA TDD bands Supporting 9 TDD bands Pass 

Broadcast Alert Receiving EU Alert messages Not available 
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ININ 5G IOT GW functionality Options Result 

Temp 5G Modem operating up to 
+80ºC 

Pass 

802.3 Interfaces 1 Gbps, 2.5 Gbps  Pass 

Table 38: LL Koper - ININ’s 5G IoT GW - Functional test results. 

4.2.5.4 Private 5G SA System – Functional, Interoperability and Performance 
Testing 

In the following chapter, test results from functional, interoperability, and performance testing are 

provided. To ensure test diversity and heterogeneity, in addition to the Private 5G SA mobile system 

and 5G IoT GW from ININ, several commercial smartphones (Samsung Galaxy S23, OnePlus 8, 

OnePlus 9) and the Nokia FastMile gateway were used. 

Private 5G System Test type  ININ 5G 

IOT GW 

OnePlus 9 Nokia 

FastMile 

5G GW 

Samsung 

Galaxy 

S23 

5G NR TDD Config TDD 2 
TDD 3 
TDD 5 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

5G NR MIMO Mode DL SISO 
UL SISO 
DL 2x2 MIMO 
UL 2x2 MIMO 

Pass 
Pass 
Pass 
- 

Pass 
Pass 
Pass 
- 

Pass 
Pass 
Pass 
Pass 

Pass 
Pass 
Pass 
- 

APN PAP user/pass  
CHAP user/pass 

Pass 
Pass 

Pass 
Pass 

Pass 
Pass 

Pass 
Pass 

IP Assignment Dynamic IP  
Static IP 

Pass 
Pass 

Pass 
Pass 

Pass 
Pass 

Pass 
Pass 

BW limiting APN Aggregated Max Pass Pass Pass Pass 

5G NR Slicing eMBB, SST 1, SD 0 
mMTC SST 3, SD 10 
GBR slice with strict BW 
non-GBR slice  
non-GBR slice with BW 
limit 

Pass 
Pass 
Pass 
Pass 
Pass 

Pass 
Pass 
Pass 
Pass 
Pass 

Pass 
Pass 
Pass 
Pass 
Pass 

Pass 
Pass 
Pass 
Pass 
Pass 

PLMN (MCC MNC) /  
Private, Test, Public 

99901 
00101 
2020116 

Pass 
Pass 
Pass 

Pass 
Pass 
Fail 

Pass 
Pass 
Pass 

Pass 
Pass 
Fail 

Roaming Different 5GS and USIM 
PLMNs 

Pass Pass Pass Pass 

NR band n78 
RRU with n78/n77 

20 MHz 
40 MHz 
50 MHz 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

 
16 5G SA mode on a commercial Smartphones (e.g., OnePlus 9, Samsung S23) is supported only on whitelisted commercial networks. 
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Private 5G System Test type  ININ 5G 

IOT GW 

OnePlus 9 Nokia 

FastMile 

5G GW 

Samsung 

Galaxy 

S23 

NR band n77 
RRU with n78/n77 

20 MHz 
40 MHz 
50 MHz 

Pass 
Pass 
Pass 

Fail 
Fail 
Fail 

Fail 
Fail 
Fail 

Pass 
Pass 
Pass 

Broadcast Alert Receiving EU Alert 
messages 

Fail Pass Fail Pass 

Table 39: LL Koper - Private 5G SA System - Functional and interoperability test results 

4.2.5.5 Private 5G SA System – Advanced Security Testing 

State-of-the-art 5G SA security capabilities, such as secure 5G UE registration with encrypted 

SUPI/IMSI identity using asymmetrical encryption17 (public and private system keys) and data plane 

integrity, were enforced on the private 5G systems. Verification was conducted by intercepting the 

signalling and data plane messages (traces) on the mobile system. A dedicated 5G SA-capable USIM 

module was used and prepared with the public asymmetric key derived from the private key used by 

the private mobile system in the port. 

The results presented in the following Figure 125 showcase the successful deployment and operation 

of advanced 5G security services negotiated during the registration procedure between the private 5G 

SA mobile system and the utilized 5G UE. The presented traces are valid for the Samsung Galaxy S23 

5G UE. 

   
Figure 125: LL Koper - Private 5G SA mobile network supporting advanced 5G security services. 

 
4.2.5.6 End-to-end 5G slicing with strict BW guaranties  

The slicing capabilities of ININ’s private 5G system was verified for the support of network-delegated 

5G NR slicing. This feature allows to create multiple logical networks (eMBB and mMTC) with different 

performance and QoS parameters on the same 5G NR cell and the connected 5G CN network. The 5G 

CN assigns the slice parameters to the attached 5G UE based on its service profile in the UDM.  

 
17 Elliptic Curve Integrated Encryption Scheme (ECIES). 

Security function 5G SA 4G/NSA

Encrypted (SUPI/IMSI) 
(private network registration)

Temporary identity 
GUTI

Control plane privacy

Control plane integrity

Data plane privacy

Data plane integrity

SEPP – roaming*

Optional authentication 
mechanisms

 
Registration with encrypted 

SUPI/IMSI 
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Figure 126: LL Koper - 5G SA signalling with strict BW reservation using mMTC slice 

 

We utilized the signalling tracing capabilities of the private mobile system to verify the delegation of 

slicing parameters from the control plane perspective. In addition, qMON-generated traffic was 

employed at the end to test the correct downlink and uplink enforcement from the data plane 

perspective. The slicing behaviour was verified using different 5G NR operational modes, including 

optimizing TDD profiles and MIMO parameters. The test results are summarised in the following table 

and figures. 

 
mMTC slice (SST 3, 

SD 10) configuration 

on 5g NR 

 
5QI 4, with GBR 

traffic profile 

parameters 
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Private 5G System Test type ININ 5G 

IOT GW 

OnePlus 

9 

Nokia FastMile 

5G GW 

Samsung 

Galaxy S23 

TDD Config 
PLMN: 99901 
MIMO 2x2 
Band: n78 
P_max: 30 dBm 
Cell Power per port: 30 dBm 
Directional antenna: 
eMBB: SST 1, SD 0 
Slice BW: no limit 

TDD 2 
TDD 3 
TDD 5 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

MIMO Mode 
PLMN: 99901 
Band: n78 
5G NR BW: 20 MHz 
P_max: 30 dBm 
Cell Power per Port: 30 dBm 
Directional antenna: 
eMBB: SST 1, SD 0 
Slice BW: no limit 

DL SISO 
UL SISO 
DL 2x2  
UL 2x2  

Pass 
Pass 
Pass 
- 

Pass 
Pass 
Pass 
- 

Pass 
Pass 
Pass 
Pass 

Pass 
Pass 
Pass 
- 

BW limiting per 5G UE 
PLMN: 99901 
MIMO: 2x2 
Band: n78 
5G NR BW: 50 MHz 
P_max: 30 dBm 
Cell Power per Port: 30 dBm 
Directional antenna: 
eMBB: SST 1, SD 0 
Slice BW: no limit 

DL 20 Mbps 
UL 20 Mbps18 

Pass 
Pass 

Pass 
Pass 

Pass 
Pass 

Pass 
Pass 

5G NR SLICING 
PLMN: 99901 
MIMO: 2x2 
Band: n78 
5G NR BW: 50 MHz 
P_max: 30 dBm 
Cell Power per Port: 30 dBm 
Directional antenna: 
eMBB: SST 1, SD 0 

GBR slice with strict 
BW 
 

non-GBR slice 
 
non-GBR slice with 
BW limit 

Pass 

 
Pass 

 
Pass 
 

Pass 

 
Pass 

 
Pass 
 

Pass 

 
Pass 

 
Pass 
 

Pass 

 
Pass 

 
Pass 
 

NR BW test 
PLMN: 99901 
MIMO: 2x2 
Band: n78 
P_max: 30 dBm 
Cell Power per port: 30 dBm 
Directional antenna 
eMBB: SST 1, SD 0 
Slice BW: no limit 

20 MHz 
40 MHz 
50 MHz 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Pass 
Pass 
Pass 

Table 40: LL Koper - Private 5G SA System – Interoperability and performance test results 

ON the following figure an example of test results is presented for the employed mMTC slice featuring 

a Guaranteed Bit Rate (GBR) traffic profile. The specified slice parameters for this test configuration 

were as follows: GBR DL/UL Throughput: 9 Mbps (Minimum), Max DL/UL Throughput: 20 Mbps. 

This configuration allowed us to evaluate and assess the performance of the mMTC slice under the 

defined GBR traffic profile, focusing on its ability to maintain a minimum throughput of 9 Mbps while also 

reaching a maximum throughput of 20 Mbps, if available on the 5G NR cell.  

 
18 Radio conditions on the 5G UE side needs to be satisfactory. 
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Figure 127: LL Koper - Private 5G SA - Throughput test results visualisation for mMTC slice with strict 
BW requirements 

More results and findings from bandwidth performance testing scenario are detailed in the subsequent 

sections of this report. 

4.2.5.7 Bandwidth 

As indicated at the beginning n78 RRU with 2x2 was selected for the deployment of the private 5G 

system in the LL Koper with the channel bandwidth of 20 MHz in TDD mode. Based on the foreseen 

usage of the private 5G system in the port environment 4 different TDD profiles were prepared and 

verified:  

- TDD 6 profile that was optimised for the uplink intensive port applications such as real-time 

video streaming. 

- TDD 5 profile was prepared to equally balance available TDD NR slots between uplink and 

downlink traffic. 

- TDD 3 and TDD 2 profile were used to assure high downlink throughput for the port applications 

that need to utilize traffic delivered to the 5G UE. 

The test results are depicted in the table below. For the reference we included also the results in the 

case of using 50 MHz of channel bandwidth.  

Some of the presented KPI performance limitations (achieved download and upload throughput) in the 

results below are attributed to the narrow 5G NR channel bandwidth of 20 MHz that was used, and not 

to the limitations of the deployed Private 5G SA system or used 5G UE devices. 
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Used RRU with 

BBU settings 

5G NR Channel 

BW 

Private 5G System 

Test type 

DL Throughput UL Throughput 

5G NR RRU 
 

n78 
2x2 DL MIMO 
2x2 UL MIMO 

QAM 256 (up to) 

Channel BW 
20 MHz 

TDD 6 (uplink 
intensive) 

Max: 29,2 Mbps 
Min: 27,5 Mbps 
Mean: 28,3 
Mbps 

Max: 57 Mbps 
Min: 50,7 Mbps 
Mean: 54,9 Mbps 

TDD 5 (Balanced) Max: 93,0 Mbps 
Min: 89,3 Mbps 
Mean: 91,8 
Mbps 

Max: 36,5 Mbps 
Min: 33,0 Mbps 
Mean: 34,8 Mbps 

TDD 3 (downlink 
intensive) 

Max: 113 Mbps 
Min: 110 Mbps 
Mean: 112 Mbps 

Max: 28,5 Mbps 
Min: 26,6 Mbps 
Mean: 27,6,7 
Mbps 

TDD 2 (downlink 
intensive) 

Max: 136 Mbps 
Min: 134 Mbps 
Mean: 135 Mbps 

Max: 16,9 Mbps 
Min: 15,5 Mbps 
Mean: 16,4 Mbps 

Channel BW 
50 MHz 

TDD 6 (uplink 
intensive) 

Max: 52,1 Mbps 
Min: 134 Mbps 
Mean: 80,6 
Mbps 

Max: 258 Mbps 
Min: 244 Mbps 
Mean: 231 Mbps 

Table 41: LL Koper - Private 5G SA - Throughput test results using 20 MHz NR BW (K-KPI14). 

 

Figure 128: LL Koper - Private 5G SA - Throughput test results using 20 MHz NR BW (K-KPI14) 

In Figure  measurement results are presented on a time scale from left to right, corresponding to TDD 

6, TDD 5, TDD 3, and TDD 2 profiles deployed on the RRU using a 20 MHz 5G NR spectrum. 

The testing results show that the 5G NR system performance and suitability depend on the channel 

bandwidth and the application requirements. For applications that are not bandwidth-intensive, such as 

sensor readings and real-time telemetry collection, the system can provide adequate service quality 

using 20 MHz of spectrum. However, for applications that are bandwidth-intensive, such as video 

streaming and cloud computing, the 5G system needs more spectrum to achieve higher throughput and 

lower latency. The results indicate that using 50 MHz of spectrum can increase the uplink throughput 

up to 258 Mbps (Figure ), which is a significant improvement compared to 20 MHz of spectrum (uplink 

throughput up to 57 Mbps).  
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However, this may not be enough to fully utilize the potential of 5G technology used for future smart 

ports. Therefore, we recommend using 100 MHz of spectrum or more for the private 5G deployments 

to enable more advanced and diverse applications and services for the future smart port use cases. 

 

Figure 129: LL Koper - Private 5G SA - Throughput test results using 50 MHz NR BW (K-KPI14) 

Measurement results presented on a time scale – 50 MHz of spectrum using uplink intensive TDD profile 

4.2.5.8 Availability 

We conducted a long-term test to measure the availability of our deployed private 5G system and rMON 

5G IoT backend. We selected a timeframe of more than three weeks (from July 5, 2023 to July 28, 2023) 

to verify the stability and reliability of the deployed systems under different conditions and scenarios. 

We used two metrics to evaluate the availability of the systems:  

- The percentage of successful connection tests (RTT) for the deployed private 5G system to 

assure not only that system components were operational but also to verify actual connectivity 

between industrial 5G gateway and reference endpoint in 5G network. 

- Percentage of successful service tests (Web) for the rMON 5G IoT backend system to assure 

accessibility of the backend services components. 

 

The connection tests measured the round-trip time (RTT) of the ICMP packets between the 5G gateway 

and the reference point in 5G network, which also reflects the latency and responsiveness of the system. 

The service tests (Web) measured the availability and performance of the rMON IoT backend service 

endpoint, which also reflects the functionality and quality of service (QoS) of the system. We used qMON 

system to automate the test process and to assure periodically. We compared the results with the 

expected outcomes and the specifications to assess the availability of the system. 
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Figure 130: LL Koper - Availability of the private 5G systems (K-KPI10) 

For the private 5G systems (K-KPI10), during the test duration, 222.760 ICMP messages were sent, 

and 3 of them were lost (Figure ), accounting for an availability of 99,99865 %. 

 

Figure 131: LL Koper - Availability of the Enhancing 5G IoT backend (K-KPI4) 

For the Enhancing 5G IoT backend system (K-KPI4), during the test duration, 21.949 Web services 

tests were run (Figure 131), and all of them were successful, accounting for an availability of 100 %. 

4.2.5.9 End-to-End Latency 

We measured the end-to-end latency (K-KPI17) of deployed private 5G system as part of a long-term 

test to verify its availability. A timeframe of more than three weeks (from July 5, 2023 to July 28, 2023) 

was selected. We used the round-trip time (RTT) measurement to calculate the end-to-end latency, 

which is the time it takes for an IP ICMP Echo Request packet to travel from the source host (5G UE) 

to the dedicated destination host in the 5G network and back. We performed the measurement using 

two different TDD profiles, which define the allocation of uplink and downlink resources for the 5G NR 

system. The following TDD profiles were operational: 

- TDD 5: This is a balanced profile, where the uplink and downlink TDD slots are equally 

distributed. This profile provides a fair trade-off between latency and throughput. The results of 

the latency measurement using this profile are shown in Figure 132. 

- Dedicated TDD profile: This was a customized profile, where the RAN resources were carefully 

planned to minimize the latency on the 5G NR air interface. This profile sacrifices some 

throughput to achieve lower end-to-end latency. The results of the latency measurement using 

this profile are shown in Table 42. 

The results show that the end-to-end latency of private 5G system varies depending on the TDD profile 

and the network load. The (mean) latency using the TDD 5 profile was 18,6 ms, while the (mean) latency 

using the dedicated profile was 11,8 ms. The minimum latency using the TDD 5 profile was 8,5 ms, 

while the minimum latency using the dedicated profile was 7,6 ms.  
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Used RRU with BBU 

settings 

5G NR 

Channel BW 

Private 5G System Test type End-to-End Latency (K-

KPI17) 

5G NR RRU 
 

n78 
2x2 DL MIMO 
2x2 UL MIMO 

QAM 256 (up to) 

Channel BW 
20 MHz 

TDD 5 (Balanced) Max RTT: 646 ms 
Mean RTT: 18,6 ms 
Min RTT: 8,5 ms 

TDD profile optimised for low 
latency 

Max RTT: 20,7 ms 
Mean RTT: 11,8 ms 
Min RTT: 7,6 ms 

Table 42: LL Koper - End-to-End latency results (K-KPI17). 

The results indicate that the dedicated TDD profile can reduce the mean latency compared to the TDD 

5 profile, but at the cost of lower throughput. The results also indicate that the latency increases with 

the network load, as more packets compete for the same radio resources. The results demonstrate the 

flexibility and adaptability of deployed private 5G system to meet different latency requirements and use 

cases. 

 

Figure 132: LL Koper - TDD profile optimised for low latency (K-KPI17). 

4.3 UC5: Optical Character Recognition of container markings 
and Container Damage Detection 

 

4.3.1 Description and Motivation 

In the context of port management, ensuring the traceability of containers emerges as a pivotal factor in 

orchestrating the seamless transportation of cargo. This multifaceted endeavour encompasses various 

facets, including the meticulous identification of containers and the rigorous examination of their 

structural integrity. Given the challenging conditions to which containers are subjected, there is an 

inherent risk of damages that could compromise their overall robustness. Consequently, a compulsory 

visual inspection becomes imperative not only for the identification of containers but also to ascertain 

the containers' soundness and resilience in the face of harsh environmental elements and other potential 

stressors. 

 

This visual inspection of cargo containers is essential to maintain the safe and correct transportation of 

goods. This process is comprised by the detection of different elements that feature the container: the 

BIC code identifier, IMGD markers that could be adhered to the container surface or the different 

damages the surface could present (Figure 133). In addition, other parameters related to operational 

processes are interesting such as the orientation of the container during the loading or unloading 

procedures to and from vessels. 
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Damages BIC & ISO codes IMGD markers 

 

  

  

 

 

 

 

  
  

Figure 133: LL Koper - UC5 - Elements to be detected 

 

As previously mentioned in this document, a mother vessel typically requires approximately 3000 

stevedore moves (depending on the vessel size) to complete loading operations. Each of these 

manoeuvres requires a visual inspection of the containers to ensure that their conditions are suitable for 

shipment or loading onto trucks. Like many automation processes, the primary objective of an automatic 

visual inspection system is to decrease the time required for these inspections. This reduction in time 

not only minimizes the duration the vessel must remain stationary at the port but also eliminates the 

necessity for human presence in the loading/unloading area, thereby enhancing the safety of the 

process and mitigating associated risks. 

 

4.3.2 Use Case Setup 

As analysis must be made for all the faces of the container, the architecture of the use case is comprised 

by five cameras as depicted in Fig 883each of one covering one of the faces. However, to cover all the 

area from the side of the beam closest to the container two cameras are necessary, so that the whole 

container can be acquired.  

The quayside crane (QC) is equipped with five wide-angle cameras, continuously capturing 1080p (with 

the possibility of reaching 4k) video of vessel loading/unloading operations. The container analysis is 

performed in an on-premises AI-assured cloud infrastructure connected via LL Koper 5G to the STS 

cameras (Figure 134). 

 

 
 

Figure 134: LL Koper - UC5 - Real component installation scheme 

LL Koper  

Cloud 

LL Koper 

5G NSA 
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That architecture is primarily influenced by two different factors. The first factor is the computation 

capabilities essential for model inference, demanding a high-performance computer that, with severe 

restrictions, must be installed in the facilities due to access and security regulation issues. The second 

factor is the available bandwidth. In 5G networks, this enables the transmission of substantial data 

volumes necessary for streaming content from five cameras at 1080p resolution. 

 

The server installed in LL Koper features an Intel Xeon Gold 6132 2.6G processor, 128G RAM memory 

and NVIDIA Tesla T4 GPU graphic card to accelerate the processing time of the deep learning models 

inference. The 5G NSA from Telekom Slovenije was exploited to deliver uplink non-processed 1080p 

video streams at the central server for its analysis. Information is later sent to update the information at 

the LL Koper cloud. 
 

  
Figure 135: LL Koper - UC5 - System architecture 

 

The ML visual inspection procedure algorithms (a.k.a. perception instance) are implemented in python 

and installed in five different docker containers, see Figure 134, one for each camera. The inner pipeline 

of each perception instance is described in Figure 135. And it is comprised of several stages. The 

execution flow of each instance varies depending on the elements present in the image. 

 

 

 
 

Figure 136: LL Koper - UC5 - Perception instance pipeline scheme 

The heuristic module is comprised of several Python scripts that continuously check the messages sent 
to a messaging broker (Kafka) by the perception instances, as shown in Figure . Once a timeout is 
detected (meaning no more messages are being sent for a while), the heuristic module decides whether 
a container is being operated or not. It could be a container that just passed by in front of the camera 
without stopping, for example. 
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Figure 137: LL Koper - UC5 - Decision module functional architecture 

 
The perception instances undertake various tasks (see Figure 137) to gather the required information 

for the system: 

 

Visual objects detection: A pre-trained large sized YOLOv5 19 neural network was finetuned on coco 

dataset20 with synthetic labelled images2122 and later finetuned from here with real images. In the 

synthetic images all kind of elements can be found, whereas in the real images only containers, texts 

and certain IMDG markers can be identified. During training, the network started with pre-defined 

weights and was allowed to change weights on all the layers, this process is usually known as finetuning. 

Damages detection: Due to the absence of real images depicting damages, and the resulting subpar 

performance when applied to real data, caused by the domain gap between real and synthetic images, 

this module has been removed from the pipeline. Only a laboratory analysis has been conducted. A 

segmentation model has been used to address this task, and the training was carried out using synthetic 

images from the SeaFront dataset.  

Text detection: A CRAFT model was used to detect text within the container (once it has been 

detected). This module is only used when the prompt detection with YOLOv5 model does not detect text 

but detects container. CRAFT model has proven to be a robust alternative to be considered for text 

detection. In this case this model is combined with the previous more generalist detector. 
OCR: Another large sized YOLOv5 network was finetuned for 150 epochs on a synthetically generated 

and annotated dataset of images with different true type fonts (ttf) and then it was fine-tuned again with 

dataset composed of labeled real text crops. 
The synthetic dataset was composed by 1297 images, 1034 for training and 264 for validation and the 

real dataset consists of 786 images, 686 images for training and 100 images for validation.   
Door/No Door classifier: To classify the presence of a door on a container face, a ResNet50 model 

has been selected. It was fine-tuned using already pre-trained weights with a dataset composed of 

synthetic and real images. The synthetic dataset comprised of 612 door images and 612 no-door 

images, as this approach allowed us to easily generate a balanced dataset. The real dataset consisted 

of 2275 door images and 3262 no-door images. 

 

 
19 https://zenodo.org/record/7347926 
20 https://cocodataset.org 
21 Guillem Delgado, Andoni Cortés, Estíbaliz Loyo. Pipeline for Visual Container Inspection Application using Deep Learning. In 
Proceedings of the 14th International Joint Conference on Computational Intelligence IJCCI 2022, ISBN 978-989-758-611-8, 
ISSN 2184-2825, pages 404-411. DOI: 10.5220/0011590900003332 
22 Guillem Delgado, Andoni Cortés, Sara García, Estíbaliz Loyo, Maialen Berasategi, Nerea Aranjuelo, Methodology for 
generating synthetic labeled datasets for visual container inspection, Transportation Research Part E: Logistics and 
Transportation Review, Volume 175, 2023, 103174, ISSN 1366-5545, https://doi.org/10.1016/j.tre.2023.103174. 
(https://www.sciencedirect.com/science/article/pii/S136655452300162X) 

 

https://doi.org/10.1016/j.tre.2023.103174
https://www.sciencedirect.com/science/article/pii/S136655452300162X
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Figure 138: LL Koper - UC5 - Perception instance pipeline scheme 

 

Therefore, UC5 is specifically designed to minimize the inspection time for containers, ultimately leading 

to a reduction in economic costs within the logistics chain. This is achieved by leveraging the high-

speed, low-latency communication capabilities of 5G technology to efficiently track and inspect 

containers during their presence within the port premises. 

  

4.3.3 List of Key Performance Indicators 

  

KPI KPI ID Target Value 

Model 
accuracy/reliability  

K-KPI19  
 Depends on the ML 

model configuration and 
the video frame size 

Model Inference 
Time  

K-KPI20  

Depends on the ML 
model configuration, the 
video frame size and the 

hardware architecture 

Table 43: LL Koper - KPI List for UC5 Optical Character Recognition of container markings and 
Container Damage Detection. 

 

4.3.4 Methodology and Measurement Tools 

The deep learning models employed in this solution have been trained using a combination of real and 

synthetic data. The performance of the system is ultimately defined by the quality of the data relevant 

to the target scenario. The evaluation has been conducted at two distinct levels: the perception 

instance and the overall system. 
 

In response to a shortage of annotated data, the initial strategy involved training and testing algorithms 

with synthetic data. Thus, SeaFront Dataset (see Figure 139) was created by combining Blender and 

python to generate a diverse and representative dataset.  
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Figure 139: LL Koper - UC5 - Some examples of synthetically generated containers 

 

The dataset was consisted of 7910 images for training and 1978 images for validation. The elements 

randomly added to the surface of the container 3D model included BICCODES, ISOCODES, IMDG 

stickers or markers, as well as visible damages such as axis deformation, dented damage, perforations, 

holes, etc. (see Figure  140). Additionally, other stickers and effects like corrosion, texture, shadows, 

external elements, hdr backgrounds, etc. were incorporated. It is worth noting that a dataset of any size 

could be created using the developed scripts, provided the required time. 

 

 

 
Figure 140: LL Koper - UC5 - Some synthetically generated container that exhibit damages 

 

However, not all the items for the different tasks presented equal modelling difficulty; synthetic 

containers for container detection proved to be straightforward, followed by text lines and IMDG also for 

detection. In contrast, damages for damages detection and identification showcased a wide variety of 

different visual perceptions and the generational capacities of the scripts, along with Blender, were not 

able to shape all the intricacies.  
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To address the domain gap between synthetic and real data, and once the cameras were available to 

capture data, a real dataset was created. This real dataset was exploited to fine-tune and to evaluate 

perception instances, not the overall system due to desynchronization issues between frames provided 

by videos recorded from different cameras. 

To evaluate perception instances, 70 different 30-minutes videos were gathered. Out of these, 20 videos 

were used to fine-tune the models that were initially trained with synthetic data. The remaining videos 

were employed for the evaluation process.  Accuracy was calculated by comparing the predictions made 

by the pipeline for each sequence with a ground truth text file containing the correct BIC and ISO codes 

for the sequence. 
 

The acquired videos include approximately 700 container moves, where each container move consists 

of several frames capturing the motion of the crane during the loading/unloading phase. These videos 

were recorded in various weather and operational conditions and at different times of the day. 
 

In conclusion, elements with a more straightforward and robust structure (strong intra-class visual 

features), such as the container itself and the text blocks, yield higher detection accuracy compared to 

elements that generate more diverse features or exhibit greater inter-class variability (damages, IMDGs, 

optical character recognition) when applying synthetic trained models to real data. 

 

Due to the absence of IMDG markers they have only been evaluated in the laboratory with synthetic 

images, as well as damages. However, in the case of IMDG markers the model used in the detection 

stage of the deployed system is prepared to identify them.  

 

As for the binary classification module (door / no-door), a ResNet classification model has been fine-

tuned from the synthetic trained model with a dataset with 2275 door real images and 3262 no door real 

images. Evaluations has been made with 520 door images and 680 no-door images (see Figure ). 

 

 

   

       
Figure 141: LL Koper - UC5 - Door images (upper row) and no-door images (lower row) 

 

On the other hand, the system's evaluation is carried out manually through an analysis of the predictions 

generated by the decision module (see Figure  142). This analysis takes place after the decision module 

has received and reviewed the information from the perception instances and has decided whether there 

is a container in operation or not. 
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 Figure 142: LL Koper - UC5 - Regular evaluation process for the decision module 

 

4.3.5 Results 

   

4.3.5.1 K-KPI19 Model accuracy/reliability 

As there are several models involved in the result, a more detailed study was conducted.  
 

The perception instance approach measures the different perception instances' accuracy separately 

by processing each video and comparing its output with a list (a text file) that includes containers arriving 

on that specific video. 

 

Initially, we conducted tests using synthetic data, achieving satisfactory results in almost all tasks. 

However, when applied to real data, the performance significantly dropped, particularly in the damage 

segmentation task.  Therefore, this document presents only laboratory results for the damages 

segmentation part, while the remaining tests were conducted on real images acquired from the cameras 

installed in the port. 

 

The damages detection tasks were addressed training a Mask R-CNN model with synthetic data and 

testing it with the test part of the synthetic dataset: 

 

Mask R-CNN AP APS APM APL 

Precision 67.5 12.4 45.9 77.8 

Recall 71.7 13.2 50.9 77.7 

Table 44: LL Koper - UC5 - Precision and Recall of the damage segmentation model with synthetic 

label data 

As can be seen in the table 44, the results are modest, and with small objects, the model has difficulties 

to segment them correctly. This indicates that more labelled data, particularly with small and medium 

damages is likely necessary to improve performance. Additionally, some modifications in the 

architecture could also be helpful. 

 

In the case of the IMDG stickers detection task, both analyses, with synthetic and with real images, were 

carried out. The detection of IMDG markers is available in the final pipeline, but the number of IMDG 

markers in the real dataset is very small (11 markers in the entire 72-video dataset). All IMDG markers 

are recognized. However, this is not representative because as mentioned above the number of markers 

is small and, moreover, they are of the same type. Therefore, the following table 45 provide the result 

of the detection model for the test part of the synthetic per class and globally. 

 

Model P R map50 map 

YOLOv5-L 0.754 0.898 0.792 0.734 

Table 45:  LL Koper - UC5 - Evaluation metrics for Yolov5l for synthetic IMDG detection 
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Class P R AP50 AP 

text 89 87.9 91.5 73.2 

C1.1 54.5 59.3 65.2 59.0 

C1.2 29.3 42.8 28.9 26.0 

C1.3 28.9 49.9 30.3 27.4 

C1.4 30.6 54.7 34.5 31.3 

C2.1 50.4 65.4 53.3 47.8 

C2.2 46.4 71.6 47.7 42.4 

C2.3 87.3 98.7 98.9 87.6 

C2.4 80.5 96.5 97.0 87.8 

C2.5 43.1 72.7 46.3 40.7 

C3.1 45.7 86.3 47.8 42.8 

C3.2 49.2 83.1 51.5 45.7 

C4.1 85.0 97.7 98.8 89.9 

C4.2 90.8 95.6 97.4 88.0 

C4.3 89.0 96.6 98.3 89.2 

C4.4 85.5 97.5 97.9 88.7 

C5.1 90.4 97.1 98.4 89.6 

C5.2 91.4 96.0 97.6 89.3 

C5.3 83.8 97.1 97.9 89.3 

C6.1 47.2 69.0 49.0 44.1 

C6.2 65.3 78.3 80.7 72.6 

C7.1 78.0 94.6 95.0 85.1 

C7.2 47.1 88.4 52.1 46.4 

C7.3 85.1 88.0 92.6 83.7 

C7.4 51.9 91.5 52.6 46.0 

C8.1 88.7 98.4 98.5 89.3 

C9.1 87.5 97.3 97.3 86.9 

containe
r 

100 100 99.5 99.5 

Table 46:  LL Koper - UC5 - Evaluation metrics per class for Yolov5l for synthetic IMDG detection  

Regarding the binary classification task, which is only applied with cameras C1 and C2 providing 

information about the actual orientation of the container during loading or unloading operations, it has 

proven to be robust and stable after the fine-tuning process from synthetic data. The ResNet-based 

classification model has been tested with an additional test dataset composed of 520 real door images 

and 680 real no-door images. The results in the test dataset include 1195 TP (true positives) and 5 FP 

(false positives), i.e., the model achieves an accuracy of 0.995.  

 

 

The remaining tests have been conducted with real data, providing an approximate understanding of 

how the overall system will function for the five installed cameras. 
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Figure 143: LL Koper - UC5 - PI’s evaluation process scheme 

 

The validation process was conducted as depicted in the graphic above. The perception instance 

pipeline was executed for each of the 5 cameras, up to a total of 20 test videos for each camera. These 

videos contained a varied number of events, typically ranging from 5 to 15. 

 

 

 
Figure 144: LL Koper - UC5 - Precision and Recall of the different cameras, considering both the BIC 

and ISO codes 

 
Cameras C1 and C2 appear to be more robust and stable, as expected, with an average precision of 

0.72 and average recall of 0.52 for camera C1 and 0.87 and 0.92 for camera C2. However, the lower 

values are mainly due to the absence or lack of ISO code detection as in these graphics, we are 

considering the detection of both identification numbers, which are not always present. 

 

ISO code characters are occasionally misclassified. This occurs because most of the containers 

appearing in the training footage belong to a single type, which is more common and recognized more 

accurately during the character recognition stage. 

To overcome this issue and achieve better results, we need a more diverse set of real training data. 

 

Another analysis has been conducted using the obtained results, focusing solely on the BIC Code itself. 

This provides a more precise perspective on the accuracy of the algorithm, as the absence of the ISO 

code is not factored into the calculations. 
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Figure 145: LL Koper - UC5 - Perception instance pipeline scheme 

 
In this second approach (Figure 145), it is notable that Camera C2 achieves the best results with an 

average precision of 0.95 and an average recall of 0.91. This is directly linked to the resolution of the 

container in the image. For example, Camera B experiences a drop in precision when capturing 

sequences at night, as the camera's mechanism for handling low-light situations causes it to lose focus 

in the originally targeted area. A similar situation occurs with Camera A1 and Camera A2. 
 

The overall system approach involves measuring the actual output of the system in real-time, directly 

from the cameras, with all perception instances operational. The evaluation is conducted directly on the 

system's predictions—specifically, on the containers it ultimately detects and their associated BIC and 

ISO codes. This assessment, performed manually on various days, encompassed a total of 100 different 

operations involving diverse containers and operations. 
 

 

Element TP FP Accuracy 

BIC + ISO Code 100 4 0.961 

Table 47: LL Koper - UC5 - Overall system performance 

 

While the accuracy of individual perception instances may fall below 0.9 depending on the camera, the 

combination of analyses from various perception instances has demonstrated greater stability and 

comparable accuracy to the best-performing individual instance. 
 

 

 

4.3.5.2 K-KPI20 Model Inference Time 

  
Computation time has been measured in three different scenarios: NVIDIA Tesla V100 32 GB, Tesla T4 

16GB and CPU. This analysis is conducted in several levels. For each module an inference time is 

calculated to determine the time consumed by that concrete task. Afterwards the overall execution time 

is also calculated. 
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Figure 146: LL Koper - UC5 - Perception instance pipeline scheme 

 
As depicted in the graphs, GPU execution consistently lags CPU execution by an entire order of 

magnitude. While GPU execution typically ranges from approximately 50 ms to 800 ms, CPU execution 

can extend up to 7 seconds, especially in cases with a high number of detected texts. 

 

 
 

 
Figure 147: LL Koper - UC5 - Different execution cost results across different hardware platforms 

 

When examining the optimal scenario, it becomes evident that not all modules exhibit equal time 

consumption. OCR and Craft execution time is deeply related to the number of text detections obtained 

from the detection module, so detection stage is more stable. Certain modules significantly contribute 

to the overall execution time, warranting further scrutiny and exploration for potential enhancements. 
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Figure 148: LL Koper - UC5 - Cost execution for the distinct modules 

4.4 UC5: Monitoring Port Terminal Trucks with Telematics IoT 
device 

 

4.4.1 Description and Motivation 

To have real-time information and visibility about the operational status of port assets, such as yard 

trucks, is a key input to optimize operational flow and predict maintenance. The Continental 5G IoT 

device allows the collection of telemetry data both via the vehicle CAN interface (e.g., fuel consumption) 

and from the on-board GNSS module (speed, acceleration, standstill time, etc.). The device can operate 

in several 5G NR bands; below are presented the used bands in LL Koper: 

 

Telemetry IoT device used 5G cellular bands  

Cellular network  RF bands  

5G NSA (SA)  n7, n78  

Table 48: LL Koper - UC5 - 5G NR operational bands for telematics IoT device. 

 
Figure 149: LL Koper - UC5 - Top view of used Telematics IoT device. 
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Figure 150: LL Koper - UC5 - Bottom view of used Telematics IoT device. 

 

As mentioned before in this document, a mother vessel requires about 3000 stevedore moves 

(depending on the vessel size) to complete loading operations. Each of these manoeuvres requires a 

visual inspection of the container itself to check if its conditions are correct to be shipped or loaded on 

the truck. As in many automation processes, the main goal of an automatic visual inspection system is 

to reduce this time and thus, the time the vessel must stay stopped at the port, also removing the need 

for human presence at the loading/unloading area increasing the safety of this process minimizing risks. 
 

4.4.2 Use Case Setup 

 

Vehicles operating in the Luka Koper/Port of Koper were equipped with Continental Telemetry IoT 
devices supporting 5G, that allow the collection of telemetry data (e.g., fuel consumption, speed, 
acceleration, standstill time etc.).  
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Figure 151: LL Koper - UC5 - Installing Telemetry IoT devices in Port Terminal Trucks. 

  
These IoT devices transmit collected data in real-time, using the 5G NSA network in LL Koper, to a 

backend present in the Koper IT infrastructure. The overall architecture of the system is defined below: 

 

 
Figure 152 System Architecture of Terminal Truck Monitoring System 

  

IoT devices are connected to the vehicle CAN network via an inductive connection. The IoT devices  

read and interpret all the messages on the CAN network, filtering out only the relevant messages, which 

it then stores internally. Depending on the frequency of the messages, some data is averaged out before 

being sent (e.g. vehicle speed). The collected data is packaged and sent every second via MQTT to the 

backend. 
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The backend consists of 2 servers: 

 

• Application server: collects data via MQTT, interprets data and calculates KPIs, web server for 

application used by end user 

• Database server: stores collected and calculated data 

 

Collected data is organized into trips, on which KPIs are calculated. Trips are defined as a series of 

unbroken operations (e.g. container pickup, contained delivery) performed by a single vehicle within the 

port area. Once the trips are identified, the application server automatically calculates relevant KPIs and 

stores them in the database. 

 

A web application developed in Python and running on top of NGINX allows the end users to visualize 

the collected and calculated data. 

 

 
Figure 153: LL Koper - UC5 - Example of trip overview. 

 

4.4.3 List of Key Performance Indicators 

The presented KPIs were collected from the operational port trucks. Due to the sensitivity and strict 

confidentiality of the port operational data, the KPIs with IDs K-KPI25 and K-KPI28 were removed from 

all public 5G-LOGINNOV deliverables and reports and are only available to the European Commission 

and reviewers upon request.  

 

KPI KPI ID Target Value 

Time Trucks 
Parked in the Area  

K-KPI25 
 Time spent with engine 
stopped, over the given 

period  

Average Speed K-KPI26  Average speed for a trip 
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Truck 
Acceleration and 

deceleration 
K-KPI27 

Average acceleration, in 
m/s2, for a trip 

Truck Stand Still 
Time 

K-KPI28 
Time spent in idle, for a 

trip 

Fuel 
Consumption (in 

operation and 
standstill) 

K-KPI29 

Average fuel 
consumption, for a trip  

Table 49: LL Koper - UC5 - KPIs related to monitoring Port Terminal Trucks with Telematics IoT 
device. 

. 

4.4.4 Methodology and Measurement Tools 

The deployed web application was used for both collection of raw data, as well as trip identification and 

calculation of related KPIs. 

 

 
Figure 154: LL Koper - UC5 - example of raw telemetry data collected from a vehicle. 
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Figure 155: LL Koper - UC5 - Example of trip visualization, with heat map of fuel consumption. 

 

On average, each vehicle performed approx. 150 trips per month. The calculated trip KPIs were then 

used to determine the overall KPIs for Living Lab Koper; the same data can be used to better understand 

differences between the vehicles, as well as allowing correlation with other information (e.g., 

temperature), that could further allow the Koper port to improve logistics operations within the port area. 

 

 
Figure 156: LL Koper - UC5 - Trip KPI visualization for a vehicle. 
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4.4.5 Results 

  

4.4.5.1 K-KPI25 Time trucks parked 

While this information is not directly connected by the IoT devices, the lack of transmitted information 

will represent periods where the IoT device is powered off and, thus, the vehicle is parked (i.e. vehicle 

ignition is off). 
 

Given this, we can simply calculate the time each vehicle is parked within a given amount of time. While 

some variation is visible between the different vehicles, the values are relatively consistent, hovering at 

an average of xxxx spent parked. 

 

IoT device ID Average (% of day) Min (% of day) Max (% of day) 

351940280065592 xxxxx xxxxx 100.00 

351940280066111 xxxxx xxxxx 100.00 

351940280066236 xxxxx xxxxx 100.00 

351940280066434 xxxxx xxxxx 100.00 

Table 50: LL Koper - UC5 - Time trucks parked values. 

 

4.4.5.2 K-KPI26 Average speed 

  
Average speed is determined based on the raw data collected form the vehicles. The raw speed is 

obtained in 2 different manners: 

 

- Directly from the vehicle, based on data collected from the CAN communication bus 

- Through GNSS data collected internally by the IoT device itself 

 

The speeds collected in these 2 manners are correlated, in order to obtain the most reliable resulting 

data. 

 

IoT device ID Average speed (km/h) Max speed (km/h) 

351940280065592 5.6 43 

351940280066111 5.55 39 

351940280066236 7.39 41 

351940280066434 5.98 39 

351940280067374 4.6 29 

Table 51: LL Koper - UC5 - Average speed values. 

As can be clearly seen an outlier can be identified rather easily: the vehicle on which IoT device 

351940280066236 is installed in has both a higher average speed, as well as a higher max speed than 

any other device.  
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Looking at the max and average speed for a single vehicle, for over a hundred trips, you can see that, 

while there are variations between trips (mainly due to significant differences in operation time), the 

trendline for max speed and average speed are stable: 

 

 
Figure 157: LL Koper - UC5 - Trendlines for max and average speed for a vehicle over a month. 

  

4.4.5.3 K-KPI27 Truck acceleration and deceleration 

 

Maximum acceleration and deceleration are important in determining overall driving behaviour; higher 

values correlate should typically correlate with higher fuel consumption, thus leading to higher operating 

costs. In addition, they can also increase the wear on the vehicles. Vehicle acceleration and deceleration 

are calculated based on the vehicle speed obtained by the IoT devices. 

 

 

IoT device ID 
Average max. 

acceleration (m/s2) 
Average max. 

deceleration (m/s2) 

351940280065592 13.42 -13.23 

351940280066111 9.4 -9.61 

351940280066236 9.79 -13.32 

351940280066434 10.01 -11.48 

351940280067374 2.12 -4.25 

Table 52: LL Koper - UC5 - Truck acceleration and deceleration. 

4.4.5.4 K-KPI28 Standstill time 

 

Standstill time represents the part of a trip in which the vehicle is stationary (typically while containers 

are loaded and unloaded). Standstill time is important, as the vehicle has its engine on during this time, 
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thus still consuming fuel. The aim is to reduce the standstill time as much as possible, to both improve 

port operations, as well as to reduce costs related to fuel.   

 

While there is significant variation between vehicle on individual days, the average standstill time for 

trips over a one-month period is uniform: 

 

IoT device ID 
Average standstill time 

(% of day) 

351940280065592 xxx 

351940280066111 xxx 

351940280066236 xxx 

351940280066434 xxx 

351940280067374  xxx 

Table 53: LL Koper - UC5 - Standstill time. 

4.4.5.5 K-KPI29 Fuel consumption 

 

The most meaningful KPI from a financial perspective is fuel consumption, since that directly correlates 

to expenditure. Since overall standstill time can influence the result of fuel consumption, the KPI was 

broken down into 2 distinct parts: 

 

- Fuel consumption in standstill. This value should be fairly stable for a given vehicle given similar 

conditions (e.g. temperature) 

- Fuel consumption in operation. This value is strongly related to driving patterns, such as 

acceleration and braking, maximum speed, as well as trip length 

 

 

Thus, we have the following results for the fuel consumption in standstill: 

  

IoT device ID 
Standstill fuel 

consumption (L/h) 

351940280065592 3,46 

351940280066111 3,51 

351940280066236 1,4 

351940280066434 2,66 

Table 54: LL Koper - UC5 - Fuel consumption. 

Plotted on a graph, the standstill fuel consumption for one of the vehicles looks like this: 
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Figure 158: LL Koper - UC5 - Example of standstill fuel consumption. 

As mentioned previously, fuel consumption in operation is dependent on several factors, including trip 

length. For a given vehicle the fuel consumption plotted on a graph is presented below: 

 

 
Figure 159: LL Koper - UC5 - Fuel consumption in operation (L/h). 

 



 

 142 

 
Figure 160: LL Koper - UC5 - Fuel consumption in operation (L/100km). 

 
There is a strong variation in fuel consumption, if measured in L/h (default value returned by the vehicle). 

This variation can be explained by higher speeds or when the engine is under heavier load (such as 

when the vehicle is transporting a container vs. driving without one). However, the fuel consumption in 

L/100km is fairly stable within a given period of time.  

 

The average fuel consumption, however, is fairly stable and consistent between the different vehicle, 

with a single vehicle being an outlier (same one with a significantly lower standstill fuel consumption): 

 

IoT device ID 
Standstill fuel 

consumption (L/h) 

351940280065592 6,38 

351940280066111 6,79 

351940280066236 3,00 

351940280066434 6,22 

Table 55: LL Koper - UC5 - Standstill fuel consumption. 

4.5 UC6: Mission Critical Communications in Ports 

4.5.1 Description and Motivation 

The logistics within a port extend beyond tracking containers, encompassing crucial elements for safer 

and more reliable operations. Security and vehicular capacity control are integral aspects contributing 

to enhanced operational efficiency. Security measures focus on securing restricted areas inaccessible 

to pedestrians, while managing vehicular capacity aims to prevent congestion and ensure smooth 

transit. 

Within Use Case 6, various activities related to port security operations were introduced to LL Koper. 

Real-time video surveillance was implemented using 5G-enabled body-worn cameras carried by 

security personnel, supporting their routine and mission-critical tasks while enhancing personnel 

security. Additionally, UHD video surveillance cameras with night vision capabilities, strategically 
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positioned and connected to the 5G network, monitored specific port areas, such as railway entrances, 

to bolster security services. A drone-based system was deployed for ad-hoc video surveillance, utilizing 

the 5G network to transmit real-time video streams to the port Security Operation Centre. 

Complementing video-based security operations, an automated detection system employing Machine 

Learning (ML) and Artificial Intelligence (AI) for analysing video feeds was implemented. This system 

identifies and tracks objects, vehicles, and personnel movement in designated port areas. As part of AI-

assisted use case, we aim to achieve two objectives. Firstly, we seek to detect individuals in restricted 

areas. Secondly, our goal is to identify and count vehicles in the port's access zones. This information 

will enable the port to have real-time visibility into the presence of vehicles within its premises. 

Furthermore, a private security operations management and support system, equipped with dedicated 

applications, facilitated comprehensive security operations, including monitoring personnel/team status 

and positioning. 

4.5.2 Use Case Setup 

In UC6, the foundational communication infrastructure leverages 5G technologies deployed in UC1, 

such as UHD cameras on light towers and assured connectivity through an industrial 5G Gateway (see 

Figure 83). This serves as the baseline communication enabler, ensuring the reliability and resilience of 

the comprehensive real-time video surveillance system for mission-critical requirements. The system 

utilizes both commercial (NSA) and private 5G network services (SA).  

4.5.2.1 Drone and body worn camera -based video streaming 

We established real-time video surveillance by deploying 5G-enabled body-worn cameras by security 

personnel. This initiative aimed to enhance both their regular and mission-critical operations while 

providing an additional layer of personnel security (e.g., emergency button on worn camera). 

Simultaneously, drone-based surveillance was implemented to offer extended ad-hoc video surveillance 

support, leveraging the 5G network to seamlessly transmit video streams in real time to the port Security 

Operation Centre. 

The initial phase involved installing and integrating various types and form factors of video sources, 

including body- and helmet-worn security camera extensions for smartphones and drone-based camera 

system (Figure 161). These sources were connected to the available 5G capabilities within LL Koper. 

Following a predefined security scenario, captured video streams from these deployed sources were 

transmitted in real-time across the established 5G system. Due to the unavailability of streaming devices 

with technology supporting 5G NSA or SA modes, a OnePlus 9 smartphone was utilized to connect 

wearable and drone-based systems and to ensure connectivity to the deployed NSA and private 5G SA 

networks. While the solutions were not operational grade, we were still able to assess the proposed 

concept of introducing real-time streaming over the 5G systems in the port environment. Subsequently, 

these streams were made available to the security and operational support teams within LL Koper.

     

Figure 161: LL Koper - UC6 - Body and helmet-worn security camera extension for smartphone 
(figures on the left and middle), drone-based video streaming (figure on the right). 

In the subsequent phase, professional body-worn cameras were integrated into the LL Koper 

environment, and a dedicated cloud-based application was developed by ININ to consolidate several 

video streams from various sources onto a single surveillance system. This application combined 
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streams from wearables, drones, and other cameras (e.g., deployed UHD cameras in the port). 

Additionally, GIS-supported positioning of the video sources was ensured, and triggered alarms by 

security personnel were displayed on a map showcasing emergency situations encountered in the port 

(Figure 162).  

Although we were waiting to purchase the professional cameras until the last stage of the 5G-

LOGINNOV project, 5G technology was still not available in these market niches; thus, we were only 

able to directly utilize 4G capabilities of the deployed NSA system (LTE Radio only). For connectivity to 

the 5G NSA and private 5G SA systems, we again used smartphones with 5G support to connect 

professional cameras via Wi-Fi to deployed 5G networks in LL Koper. These limitations are solely due 

to the current limitations in the 5G chipset value chain, and we believe that as Private 5G SA systems 

expand globally, manufacturers will also integrate appropriate 5G NR support to the professional 

wearable devices.  

   

Figure 162: LL Koper - UC6 - Body worn security cameras (figures on the left), ININ’s security center 
application (figure on the right). 

The figures that follow showcase real-time video streaming testing with professional body-worn cameras 
(Figure ) and drone-based surveillance (Figure 163) conducted in LL Koper. 

 

   
Figure 163: LL Koper - UC6 – Demonstrating real-time video streaming as part of a final 5G-LOGINNOV event .

  

Figure 164: LL Koper - UC6 – Demonstrating drone-based video streaming as part of testing event 
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4.5.2.2 People and vehicle detections in a controlled area  

Another objective of UC6 was to automate the detection of intruders within a pre-defined restricted area 

using AI/ML methods. To achieve this, Vicomtech developed an AI-assured visual detection system. 

The system comprises two different UHD and 5G-connected cameras installed on poles at varying 

heights, both focused on the same region but from different perspectives. 

 

Figure 165: LL Koper - UC6 people detection simplified scheme 

Each camera was configured with a designated region of interest (ROI) where detection was conducted. 

Whenever an intrusion was detected within the ROI, an alarm was activated to alert Luka’s personnel 

and prevent unauthorized access. 

 

Figure 166: LL Koper - UC6 - Person detection system 

 

The second system is designed to manage the number of vehicles circulating within the port 

installations. It is installed on a gantry, typically positioned at the entrance to the port.  
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Figure 167: LL Koper - UC6 vehicle detection and counting simplified setup scheme 

This system classifies vehicles in 5 different classes { vehicle, motorbike, bus, truck and towtruck }. 

However, it’s worth noting that no motorbikes have been observed in the videos used for evaluation. 

This system tracks both vehicle entrances and exits at the defined the area, marked by a pre-configured 

line. 

 
Figure 168: LL Koper - UC6 - Vehicle detection and counting system 

 

4.5.3 List of Key Performance Indicators 

As presented in the motivation section of UC6, we conducted two concurrent demonstrators: “Drone 

and body-worn camera-based video streaming” and “People and vehicle detections in a controlled area”. 

The “Drone and body-worn camera-based video streaming” demonstrator was limited to functional and 

system usefulness verification in LL Koper, and the security operational procedures used during the 

demonstrator testing are for the port security strictly confidential.  

Therefore, results from the following chapter onward are relevant only to the activities related to the 

“People and vehicle detections in a controlled area” demonstrator. 
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KPI KPI ID Target Value 

Model accuracy/reliability  
(People detection) 

K-KPI21  
Depends on the ML model configuration 

and the video frame size  

Model Inference Time  K-KPI22  

Depends on the ML model 
configuration, the video frame size and 

the hardware architecture 
 

Model accuracy/reliability 
(vehicle detection) 

K-KPI23 
Depends on the ML model configuration 

and the video frame size 

Model Inference 
Time 

K-KPI24 

Depends on the ML model 
configuration, the video frame size and 

the hardware architecture 
 

Table 56: LL Koper – KPIs list for UC6 

4.5.4 Methodology and Measurement Tools 

 

To tackle this assessment stage, several models were studied for these systems, including YOLO-NAS, 

YOLOR, YOLOv5 and YOLOv8. After empirical tests with the COCO dataset, YOLO-NAS and YOLOR 

performed worse than the Ultralytics23 models. Furthermore, analysing the results achieved with these 

initial weights, YOLOv8 was better at detecting people than YOLOv5. Therefore, the human detector 

system uses the medium version of YOLOv8, and the vehicle detection and counting system uses the 

large version of YOLOv5, which is lighter than YOLOv8 and good enough. 

To adapt the models to these problems, two different datasets were designed, one for each scenario. 

The images were obtained from two different cameras, in the case of the people detection system, with 

variability in the weather conditions and the moment of the day in which they were taken. The final 

datasets are summarised in the table below. 

System Model Dataset size Train size Val size Labels 

People detection Yolov8 medium 87 imgs 70 imgs 17 imgs Person 

Vehicle 

detection and 

counting 
Yolov5 large 4K imgs 3K imgs 800 imgs 

Vehicle 
Motorbike 
Bus 
Truck 
Tow truck 

Table 57: LL Koper - UC6 datasets 

 

Despite the lack of a large human dataset, the pretrained models allow the application to achieve 

acceptable results with this amount of data. A medium YOLOv8 model pretrained with the COCO 

dataset has been used to deal with the shortage of available data and its subsequent annotation during 

the project. The model was trained using fine-tuning to boost person detection task in this domain. This 

technique uses as initial step weights pre-trained in another domain and lets the model to modify all the 

 
23 https://github.com/ultralytics/yolov5 



 

 148 

weights to find a better model, modelling its knowledge over the previous one to improve the detection 

of the pretrained model. 

 

4.5.5 Results 

4.5.5.1 K-KPI21 Model accuracy/reliability 

 
The evaluation media of the human detection system consists of different videos of people walking 

within a restricted area. This is a set of 11.6K images taken from 32 different videos from both cameras 

at different times and weather conditions. Considering that all the frames show people inside the 

restricted area, if the system triggers the alarm, it is counted as a True Positive or success; if not, it is 

counted as a False Negative or failure. The graph below shows the behaviour of the system over time. 

 

 
Figure 169: LL Koper - UC6 - Person detection system precision over time 

 
The graph illustrates the evolution of the system’s precision over time. Although it initially fails to detect 

people in the restricted area -the first frames-, it soon enhances and converges to a value of 

approximately 85% precision. The system demonstrates sufficient robustness over time to be 

considered a successful result. 

To improve this value, the size of the dataset and the complexity of the model used could be increased. 

Firstly, adding more images to the dataset could bring more variability to the dataset, making the model 

more generic and more adaptable to new situations.  

Secondly, increasing the complexity of the model may have a direct impact on the precision of the 

system, as its representation capability gets higher. However, the inference time may increase, for the 

same reason. In this case, we are working with YOLOv8 in its medium version. 

4.5.5.2 K-KPI23 Model accuracy/reliability 

The vehicle detection and counting system has been evaluated with 40K images taken from 73 30-

minutes videos. The figure below shows the representation of each label in the ground truth. Neither in 

the training nor in the evaluation of the system was found any frame with a motorbike. For this reason, 
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there are no objects labelled as motorbikes in the dataset and this class is not considered for the 

calculation of the K-KPI23. 

 

Figure 170: LL Koper - UC6 - Vehicle detection and counting ground truth label representation  

Table 58 summarizes the results obtained after system analysis. It indicates the True Positives (TP), 

False Positives (FP) and False Negatives (FN) for each of the classes present in the dataset. With that 

information, the precision, recall and F1 score have been calculated for every class. 

 TP FP FN Precision Recall F1 

Vehicle 67 2 7 0.971 0.905 0.937 

Motorbike 0 0 0 --- --- --- 

Trucks 68 8 2 0.894 0.971 0.931 

Tow Truck 6 1 1 0.857 0.857 0.857 

Bus 1 0 7 1.0 0.125 0.222 

Total 142 11 17      

Table 58: LL Koper - UC6 - K-KPI21vehicle detection and counting task 

 

The dataset used is highly imbalanced, and the model performs better on common classes such as 

vehicles, trucks, and tow trucks, compared to buses and motorbikes, the latter being non-existent. 

Starting from the fact that it is a highly unbalanced dataset, the model adapts better to the more common 

vehicles than to the rarer ones. In the case of buses, although the precision is 100%, the majority are 

labelled as trucks. This produces a very small recall. However, it is observed that the selected model 

has sufficient representational capacity to address the issue, although it is true that adding more images 

of less frequent classes would be necessary to balance the system. 

To know the general metrics of the system, the macro and micro measurements are being used. The 

macro-averaged score is computing using the arithmetic mean, without weights, of all the per-class 

scores. Whereas micro averaging computes a global average score by counting the sums of the True 

Positives (TP), False Negatives (FN) and False Positives (FP). Those are the values represented on 

the Table 59. 



 

 150 

 Precision Recall F1 

Macro 0.931 0.715 0.737 

Micro 0.928 0.893 0.910 

Table 59: LL Koper - UC6 - Micro and Macro calculation of the evaluation metrics. 

As seen in the table, when calculating metrics using micro-averaging, the imbalance error is somewhat 

diluted. In macro-averaging, however, equal importance is given to all classes, even though in the port, 

the presence of motorcycles and buses is much lower than that of trucks or vehicles. Therefore, using 

micro-averaging achieves a superior result to macro-averaging. 

4.5.5.3 K-KPI22 – K-KPI24 Model Inference Time 

 
For the inference time calculation, an initial study has been conducted using the YOLOv8m model on 

various hardware platforms: with different GPUs and CPUs to verify the relative time differences 

between the systems. 

 

Figure 171: LL Koper - UC6 - YOLOv8 medium-sized inference time 

As expected, the execution on the GPU NVIDIA Tesla V100-SXM2-32GB of a local server (referred to 

as HAL) yielded the best results, with the average time being orders of magnitude lower than the same 

inference on the CPU. Specifically, we are talking about approximately 3~4 times faster (from 100 ms 

in CPU to 30 in GPU). 

A second experiment was conducted on the target server to obtain the KPIs. The inference time was 

obtained for two different models: YOLOv8m for person detection, corresponding to K-KPI22, and 

YOLOv5l for vehicle detection and counting, corresponding to K-KPI24. 

To evaluate the model inference time, it has been used a dataset of 1.5K images. 
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Figure 172: LL Koper - UC6 - inference time for UC6 models 

 
Mean 

Standard 

deviation 

K-KPI22 38.929 0.883 

K-KPI24 18.922 0.477 

Table 60: LL Koper - UC6 - metrics for UC6 modules KPI 

 

The average execution time is 38 ms for K-KPI22 and 19 ms for K-KPI24. This difference is due to the 

different complexity of the two models and to an additional post-processing applied in the case of the 

human detector that checks whether a person is within an area or not using an image mask. 

Peaks in the image are due to system overloads and are not significant as they do not depend on the 

model. To address them, system resources could be increased, or model resources could be reduced 

by pruning techniques or by reducing its complexity. 

To decrease the execution time different methods could be applied, such as applying optimisation 

techniques to the model architecture (pruning, quantization...) and the usage of libraries focused on 

optimising performance on GPUs (tensorRT, ONNX). 

 

5 CROSS PILOT ACTIVITIES 

For the cross-pilot activities the three Living labs collaborated in pairs.  

5.1 Athens and Koper 

Between Athens and Koper three activities took place. First, as described in Section 2.1.4 (with related 

images and measurements), the Athens site exploited the Quality Monitoring Suite (qMON) provided by 

ININ, for detailed monitoring of 5G network KPIs at PCT’s private 5G-NSA network. Particularly, various 

drive tests exploiting qMON have been performed within the port premises (along the normal routes 

followed by yard trucks) as well as stationary (non-mobile) tests, providing a detailed view on the network 

capabilities and limitations within the port of Piraeus, for the support of Athens use cases. In this view 

we provide a holistic example of common frameworks as a unified KPI system across different ports 

enabling potential standardization in performance measurement. This makes it easier to compare 

performance metrics across different locations and facilities, facilitating better analysis and 

benchmarking. When multiple ports adopt similar KPI systems, it can drive industry-wide improvements. 
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It encourages a more collaborative approach where industry stakeholders can work together 

(particularly, PCT and Luka Koper/Port of Koper, Vodafone, Telekom Slovenia and ININ) to address 

common challenges and enhance overall efficiency and performance of their network deployments and 

infrastructure. Table 61 illustrates qMON 5G test automation system used in Athens case. For more 

details please see Section 2.1.4. 

 

  

Table 61: Athens and Koper LLs cross pilot (case 1) 

 

Second, Athens UC3 “5G&AI-enabled collision warning system” (evaluated in Section 2.2) has been 

tested also with a LL Koper Terberg yard-truck, including a 5G industrial gateway provided by ININ to 

facilitate cellular connectivity (see Section 4.2) with the LL Koper edge-computing infrastructure hosting 

the AI-assisted collision warning service provided by ICCS, over the 5G network of Telekom Slovenia. 

The use case was demonstrated live on the 5G-LOGINNOV’s final event at Koper, in the 7th of 

November 2023. The demonstrations involved pre-recorded videos of the use case in Athens LL (left) 

and live demonstration at Koper (right), Figure 173 and Figure 174, as well as the preparation of the 

Koper edge-computing infrastructure (k8s compute nodes) hosting the AI service for collision avoidance 

and Terberg truck 99 (including 4K camera and 5G tablet UI) for UC3 live demonstration (Table 62) and 

evaluation. 
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Figure 173: UC3 live demonstration at the final event (a) 

 

  

 

Figure 174: UC3 live demonstration at the final event (b) 

Table 62: Athens and Koper LLs cross pilot (case 2) 

Qualitatively, the same conclusions were witnessed in LL Koper as in LL Athens, i.e., the two setups 

(sound alerts and inferenced video stream on the 5G downlink) should be used in conjunction for mission 

critical services (with stringent latency constraints) such as collision avoidance. 

Third, Athens UC5 “5G&AI-enabled container seal detection” (evaluated in Section 2.4) was also ported 

in LL Koper exploiting the Quay side crane at Koper facilitating container load/unload operations, the 

4K camera installed on the crane for crane operations monitoring, and the public 5G-NSA network of 

Telekom Slovenia for transmitting the video to the edge-computing datacentre, were the AI service 
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resides for container seal detection. Table 63 illustrate footage from the Live demonstration event were 

the use cases were showcased live at the participants. 

 

Figure 175: 5G&AI-enabled container seal detection at Koper 
LL showcased live at the final demonstration event (a) 

 

Figure 176: 5G&AI-enabled container seal detection 
at Koper LL showcased live at the final demonstration 

event (b) 

 

Figure 177: 5G&AI-enabled container seal detection Athens (left) and Koper (right) 

Table 63:  Athens and Koper LLs cross pilot (case 3) 

The major take-away for this use case is the following. The AI service, was trained solely with data from 

Piraeus Port. The resulting ML algorithm was deployed also in Koper without further training and/or fine 

tuning of the model on data from Koper, demonstrating similar performance. This indicates that the 

designed ML algorithm is able to generalize regardless of the background of the images it receives as 

input, and thus has the potential to be easily deployed in different ports and varying respective 

background settings. 
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5.2 Koper and Hamburg 

To verify the interoperability of the developed solution between Hamburg and Koper living labs, LCMM 

and GLOSA-related use cases were implemented and verified in the Port of Koper (Table 64). 

  

Table 64: Cross-Pilot feasibility – show case Luka Koper 

As demonstrated at the final event in LL Koper, Hamburg KPI achievements, can easily be scaled up 
and transferred to Port of Athens and Luka Koper. Feasibility studies took place in 2023, Table 65 was 
recorded by Hamburg’s project team in Luka Koper and uses LCMM and GLOSA in an exemplary 
manner. 
 
Table 65 depict footage from the vehicles used in the Koper at the cross-pilot demonstration. 
 

 
 

 

Table 65: Hamburg and Koper LLs cross pilot demonstration at final event in LL Koper (case 1) 

5.3 Athens and Hamburg 

More details about the Hamburg monitoring system (LCMM) at PCT yard trucks (consent involving the 

participating drivers was necessary) data will be presented at the final review meeting of 5G-

LOGINNOV, on the 15th of February, 2024. 
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6 CONCLUSION 

This report evaluated the performance of 5G technology and the performance of the identified 5G-

LOGINNOV use cases via the trial activities of the project, in real operating Port conditions within and 

outside the Port environment. Various network deployment options were tested and benchmarked, 

particularly private 5G-NSA network at the port of Piraeus provided by Vodafone, public 5G-NSA 

network at Hamburg living lab, and two network deployments at Koper, i.e., public 5G-NSA by Telekom 

Slovenia and private 5G SA from ININ.  

A portfolio of 5G technologies and use case enablers were tested, including NFV-MANO and MEC, 

slicing, precise positioning, far-edge and cloud computing, AI-assisted video/data analytics, 5G-IoT, next 

generation traffic management systems, Cooperative, Connected and Automated Mobility (CCAM) 

systems. The main focus and achieved goals for the project via exploiting 5G technological blocks was 

on applications tailored to safety and security, as well as on services that improve the efficiency of daily 

port operations (reduce costs, improve the utilization of human resources and automate logistics 

services via AI analytics), and on the improvement of the environmental footprint of port operations 

inside and outside the Port premises. Particular emphasis has been given in the cross-pilot activities to 

make sure that the lessons leaned and developed use cases and platforms can be easily transferred to 

other EU ports and logistics actors. 

As highlighted by the activities of the 5G-LOGINNOV project, 5G technology has the potential to 

significantly enhance the functionality and efficiency of critical infrastructures, such as Ports, and has to 

become an integral of their evolution, towards a more sustainable logistics supply chain for the EU. 
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