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The deliverable D3.3 “Evaluation of operation optimization” reports on the results of the trials performed
in the three Living Labs of the 5G-LOGINNQOV project, the evaluation of the use cases as well as the
evaluation of the 5G technology exploited across the three pilots in various 5G facilities (Public 5G-NSA,
Private 5G-NSA and Private 5G-SA).

Particularly, the current report takes input from D1.4, D2.3, D3.1 and D3.2, and reports on the trials
performed, the assessment of the performance of 5G technology, the assessment of application KPIs
(Quantitative and Qualitative) and their impact in the logistics domain and the Port industry, within and
outside a Port’s premises. Towards this direction, the methodology exploited per pilot/experiment/use
case is briefly described and the relevant KPI metrics along with the collected data are presented
accordingly.

Special attention has been dedicated to cross-pilot activities to ensure that the developed technology,
technology enablers, and use cases are not isolated innovations exclusive to a single logistics Living
Lab (LL). Instead, they are designed for seamless transferability to other LLs and European ports. This
particular aspect was also among the focal points of interest at the final demonstration event of the 5G-
LOGINNOV project that took place in LL Koper (Koper municipality, Slovenia) on the 7t of November,
where the Project partners (among other activities) showcased how software and technologies exploited
and developed at one site can be transferred to another, fostering potential interoperability of aforesaid
services among many EU ports, logistics actors and the broader stakeholder community (c.f. Section
5).

In summary, the conclusion of the project's outcomes is presented alongside the well-defined objectives
of the three pilots. The presentation also offers insights into the technology enablers and barriers, as
well as the challenges encountered across different domains within the multi-stakeholder community of
the 5G-LOGINNOQV project.

5G-LOGINNOV’s vision focused on enhancing/improving freight and traffic operations at Ports and
Logistics hubs via innovative concepts, applications and devices supported by 5G technology, the 10T,
Al-enabled data analytics, next generation traffic management systems, Cooperative, Connected and
Automated Mobility (CCAM). The project’s scope with focus on large scale trials and pilots has been
verified in real operating conditions in three Living Lab (LL) environments, namely, Athens (Greece),
Hamburg (Germany) and Koper (Slovenia). While Athens and Koper LLs are focused on applications
tailored to 5G and Smart Logistics within the Port premises, in Hamburg, the focus resides in hinterland,
i.e., the interconnection of the Port with the road transport network and road infrastructure. In more
detail, following the compute continuum paradigm various Al-service placement options have been
considered (extreme-edge, edge and cloud) given the diverse set of requirements of the developed use
cases (e.g., latency sensitive, or throughput intensive), creating a 5G ecosystem of cloud native
interconnected Port assets (5G Trucks, 5G cranes, 5G Drones, 5G IoT). Details on the specific use
cases and cross-pilot activities are thoroughly discussed in the remaining of the draft, promoting among
others the interoperability of the developed use cases across the pilots of 5G-LOGINNQV ports.

The main objectives of 5G-LOGINNOV can be summarized as follows; (i) the support of the “Green”
Port Industry vision by reducing the hub’s operation emissions. Particularly, a 5G based Green Light
Optimum Speed Advisory (GLOSA) system has been developed coupled with precise positioning
technology and Mutli-access edge computing (MEC), for combined coordination of vehicle platoon
movements and traffic light infrastructure; (ii) enhance safety and security operations by developing a
5G&AI enabled collision warning system between trucks and personnel, as well as mission-critical Al-
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assisted drone surveillance; (iii) improve the efficiency of logistics operations via 5G&AI enabled video
analytics services related to port control, logistics and remote automation.

The portfolio of 5G LOGINNOV use cases have been evaluated in various network deployment options,
i.e., 5G-NSA private network (in Athens LL), public 5G-NSA network (Koper and Hamburg LLs), as well
as private 5G SA network (Koper LL).

Finally, the project fostered various market opportunities building on the ecosystem of 5G technologies
in the logistics domain, thus being a pillar of economic development and business innovation and
promoting local innovative high-tech SME and Start-Ups via the published/tendered Open-calls.
Particularly, 5 SMEs have been accepted to the 5G-LOGINNOV consortium, to develop their solution
on the respective LLs and are summarized below:

e auTonomous dRones for marITime OperatioNs (TRITON) — Hellenic Drones, Koper LL.

e Real timE drowSiness detectiON, AlerTing and rEporting (RESONATE) — Libra Al, Athens LL
e 5G-Loginnov-4-Amazon (5G4A) — eShuttle, Hamburg LL

e TAXi-AD Data (TAADD) — uze! Mobility GmbH, Hamburg LL

¢ Intelligent Traffic Guidance System (ITGS) — Roads.Al, Hamburg LL

Detailed evaluation of the project’s results for all pilot sites are described in the next chapters.

1.1 Purpose of the deliverable

The present deliverable (D3.3) reports on the innovations that occurred in the project's three LLs, the
outcomes of the use cases and trials that were conducted for all pilot sites to enhance the identified
daily port operations/needs, the evaluation of the use cases in relation to the project's goals, and the
identification of any deviations from the planned activities and objectives of 5G-LOGINNOV.

1.2 Intended audience

The dissemination level of D3.3 is a ‘public’ (PU) deliverable and available to members of the
consortium, the Commission Services and those external to the project. It is specifically aimed at
providing the 5G-LOGINNOV consortium members with an extensive set of guidelines and tools that
contribute to the project’s promotion and diffusion, as well as to provide to any interested party (e.g.,
Telecommunications Industry, Road/Port/Terminal/Logistics/Maritime Operators/Authorities, SMEs,
Research Institutes and more) with the lessons learned and a deep view on the technology enablers
and limitations, as well as the challenges faced across the various domains and collaborating parties,
throughout the completion of this high TRL project results, with focus on large scale trials and pilots
verified in real operating conditions in the three LL environments of the 5G-LOGINNOV project.
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As part of the 5G-LOGINNOV project, the Athens LL developed a set of use cases and platforms which
communicate over the private 5G NSA network with different types of end devices (5G-Trucks, 5G-
Cranes, 5G-loT, 5G UESs). 5G technology enables the use case innovations exploiting the eMBB service
and low latency transmissions of 5G, including NFV-MANO based applications and service
orchestration, private cloud computing and far-edge computing innovative solutions, computer vision
and Al-enabled video analytics. In brief, the use cases which are thoroughly evaluated in the following
sections, are focused to 5G&Al enabled services tailored to safety/security applications as well as for
improving the efficiency of daily port operations (reduce costs, improve the utilization of human
resources and automate logistics services). Figure 1 depicts a high-level overview of the deployed
private 5G-NSA network, the 5G-1oT platform supported by PCT’s private cloud infrastructure and 5G-
IoT devices within the port premises for supporting the project’'s use cases. Briefly, the NSA core
(Release 15) is shown below with various pools of MME, SGW-U and PGW-U core elements for
redundancy and load balancing, as well as the private cloud infrastructure and 5G-10T nodes deployed
within the port premises, for the support of the various 5G&Al-enabled video analytics services.

Private 5G Network and 5G-loT Platform
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2.1 5G Network Evaluation

2.1.1 Network Deployment

The following Figures depict the deployed 5G radio access network (based on the Huawei RRU 5639w)
at Piraeus Port and mapping in the port area. Vodafone’s Core network operates outside the port
premises, at Vodafone’s datacentre, directly connected via fiber with the radio units installed in the Port.
Particularly PCT’s private 5G NSA network operates in band n78 at 3.7GHz with 100 MHz bandwidth,
providing 5G connectivity to a subset of the port Piers (see following Figures), whereas the remaining
port areas are fully covered via 4G. For more details regarding PCT’s 5G network, please refer to [1].
Extensive evaluation of the network KPIs follow.



2.1.2 List of Key Performance Indicators

Table 1 describes the 5G network KPIs as defined in [2] (D1.4).

Area Traffic A-KPI19 Downlink 1500 Mbps Achieved*
Capacity Uplink 120 Mbps
Specified by the max Achieved
Bandwidth A-KPI20 capacity of the RRU
installed at PCT
. Typically, up to 100 live Achieved*
Connec;ﬂon A-KPI21 sharing traffic - 1000
Density
max attached
Reliability A-KPI22 99.9 (average) Achieved
End-to-End A-KPI23 <20ms (average) Achieved
Latency
One-way Latency A-KPI24 <10ms (average) Achieved

The total capacity of the 5G cell (A-KPI19) installed in PCT is shown in Figure 2, provided by Vodafone,
and is measured at about 1.5Gbps i.e., the total load the gNB can handle, while detailed evaluation of
the remote radio unit installed is explained in the following sections. Note that the backhaul capacity
interconnecting the BBU and the datacentre of PCT where our management platform and cloud
infrastructure is deployed is limited by 1G fiber optic network, hence specifying the bottleneck of total
network throughput for our experimentation.
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Regarding A-KPI19 (Area Traffic Capacity) we exploit a single remote radio unit (RRU) installed in the
PCT, i.e., 1x RRU (Huawei AAU5639W 5G) with total traffic throughput served at the geographic area
depicted in Figure 5, and evaluated in detail in the next sections based on A-KPI20 (Bandwidth)
measurements.

With respect to A-KPI21 (Connection Density: total number of connected and/or accessible devices per
unit area) we exploit a single RRU for the 5GLOGINNOQV project to support all connected devices, hence
based on the specifications of the device this is measured as 100 devices sharing traffic (fair scheduler)
and 1000 (max) attached, as instructed by the provider.

2.1.3 Methodology and Measurement Tools

To facilitate the evaluation of the network KPIs we exploit a dual approach. We first exploit the 5G KPI
monitoring software suite (i.e., gMON), provided by ININ. Detailed view on the test protocols exemplify
how gMON is used, and is presented in [3]. Briefly, we exploit Samsung Galaxy S22 5G phone with
gMON software (Figure 3) and a backend system for data collection.

Deployment at ICCS 5G

* gMON mobile agent: Samsung S22 5G
* MN dashboard i

+ Collector
+ Grafana

et

Particularly, the qMON agent installed on the phone communicates with two virtual machines at the
backend system of PCT. The VMs include the database system, control plane functionalities and
visualization tools (Grafana). Through gMON control agent we create work orders (see Figure 4), which
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basically define continuous experiments for latency (ping) and throughput (iperf3 downlink/uplink)
measurements (A-KPI120 and A-KPI23).

gMON functionality building blocks  F=—

AE

nta d wo Uploading old results QMON agent pause Results visible
to Collector between WO on Collector

DNS  Upload | Iper Voi
Kt ] ] KPI
PING| Download WEB Speedtest  sMS ;
Start WO KPI KP\ KPI KPI KPI Flmsh wo
N Uploading results :

(XML and LOG) to Collector (DB)

‘ Samsung $22 56

Via gMON we conducted several drive tests, where the 5G phone was inside a truck moving along the
Port Piers, in order to establish a detailed map of network KPIs for supporting the 5G LOGINNOV use
cases. Additionally, stationary tests where the phone was positioned at fixed locations within the Port
premises were conducted. The following sections thoroughly present the accumulated results.

Finally, we perform also extensive numerical evaluation for the network KPIs via the 5G-loT nodes
deployed at several locations (crane, truck, pillar) within the Port area, which compose the 5G-loT
system that hosts the cloud native Al services tailored to logistics and safety applications. The tests are
conducted with legacy iperf3 and ping tools (not via qMON) from the 5G-I0T nodes.

2.1.4 Results
2.1.4.1 5G Drive Test Evaluation

Figure 5 depicts the 5G drive test conducted within the Port of Piraeus in Piers Il and Ill. The dots
represent latency and throughput tests (downlink and uplink) as we drive within the Port premises.
Relevant KPIs are A-KP120 and A-KPI123. We conducted multiple trips following the routes depicted in
Figure 5 where the green dots represent 5G connection and the blue ones correspond to LTE
connectivity. The area of interest for the Athens LL experimentation and measurements is focused
around the area with 5G connectivity (i.e., green dots) for all use cases.

Figure 6, Figure 7 and Figure 8 showcase the various measurements for downlink and uplink tests. We
observe about 450Mbps in downlink and about 92Mbps in uplink for the mobile drive continuous
monitoring tests. Figure 8 also depicts the changes between 4G and 5G. The drops in the observed
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data rate for uplink and downlink measurements are the interruptions of the experiments due to
handovers to the 4G network, and then re-establishment of the 5G session.

Iperf DL [kbps]

Next in Figure 9 we present the results from the latency (ping) measurements. The initially illustrated
increased values are 4G measurements, before entering the Pier with 5G connectivity. As already noted
since the software stack from ININ (gQMON) is installed behind several firewalls at PCT’s datacentre, we
observe a slight increase in the latency values. For instance, we observe an average latency close to
20 ms, with minimum and maximum values around 18 and 40ms, respectively. In Section 2.1.4.2 we
illustrate the relevant latency plots at the 5G-I0oT nodes, not bound by the same firewall limitation.



Figure 10 depicts the 5G (@100Mhz) and 4G (@40Mhz) channel bandwidth utilization illustrating the
handover occurrence during the drive test. Evidently, we use 5G data plane carriers only, i.e., 4G
channel carries only control plane information when the UE is connected to the gNB. Finally, Figure 11
encapsulates radio signal parameters (RSRP, RSRQ, SINR and RSSI) during the drive tests.

2.1.4.2 5G loT System Evaluation

In this section we illustrate PCT’s private 5G network capabilities for supporting the 5G-LOGINNOV use
cases on the 5G-loT system which corresponds to stationary 10T nodes mounted on quay side crane
(QC) 31 and Pillar within the Port terminal (c.f. Sections 2.3 and 2.4). We first evaluate the 5G
capabilities from the 5G-1oT nodes with legacy iperf3 and ping tools (relevant for A-KPI120 and A-KPI123).
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Via this approach we also thoroughly benchmark the performance of the 5G 10T nodes and 5G modems
(i.e., Robustel R5020 5G loT Router and Teltonika’s Industrial 10T router RUTX50) exploited by the use
cases. As this system is not bound by additional firewall rules (as in the case of gMON), we also
showcase the difference e.g., in latency measurements compared to gMON. Additionally, gMON is also
used as part of this set of experiments where we place the Samsung Galaxy S22 phone in a fixed
location with minor mobility within Pier Ill, to increase the traffic load on the network.

Particularly, the x-axis samples in Figure 12, Figure 13 and Figure 14 are average values (also showing
min, max and median) for 10 minutes of continuous tests. In total from s1 to s12 we illustrate continuous
measurements for 120 minutes of continuous network traffic. As illustrated in Figure 12, the average
latency is about 16ms (in contrast to the 20ms average latency observed though gMON due the
intermediate firewalls). For A-KP124 (one-way latency) we refer to this KPI as half-RTT and can be
calculated from Figure 12, on average, about 8ms. Similarly for the throughput measurements (Figure
13 and Figure 14) we observe maximum values of about 540Mbps in downlink and around 135 in uplink,
whereas the average respective values are close to 440 and 120Mbps. In the following sections (2.2,
2.3 and 2.4) we will also showcase the data rate incurred by the 4K streams transmitted from trucks,
cranes, and pillar nodes.
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Regarding A-KPI22 (Reliability), the following figures in Table 3 illustrate a subset of the obtained results
exploiting: the ping tool for sending network layer packets from the 5G-loT node towards the cloud
infrastructure (Figure 15); and UDP iperf3 which reports the lost datagrams for two traffic scenarios, i.e.,
typical voice call of about 100kbps data traffic (Figure 16), and the video data rate as experienced by
the high definition cameras deployed in PCT with average data rate of about 10Mbps (Figure 17).
Particularly, for the ping command the packet losses are measured via echo ICMP reply message
timeouts (No answer yet), whereas for the case of UDP we compare the Lost/Total Datagrams sent. On
average we observe above 99.9% on successful packets transmissions. Using a more robust coding
and modulation scheme could improve the 5G air interface’ reliability.
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2.2 UC3: 5G&Al enabled collision warning system
2.2.1 Description and Motivation

Piraeus Container Terminal relies heavily on internal yard trucks for the horizontal movement of
containers between stacking areas and loading/unloading areas for vessels and road/rail. Along the
routes followed by the trucks within the Port area (about 2.5 square kilometres) for facilitating the daily
port operations, personnel engaged in different Port activities might be in close proximity. Given the size
of the truck (and carried cargo), potential blind spots from the perspective of the truck driver could cause
an accident with severe consequences. Towards this direction UC3 is focused in providing a cloud
native 5G&AIl enabled collision warning service between trucks and people in proximity. The developed
service utilizes video streams (from a high-resolution camera installed on the truck) transmitted over 5G
(uplink) to PCT’s private cloud infrastructure, where the Al containerized service resides, and infers the
presence of people in truck’s close proximity. In case of positive inference, rapid alerts are delivered to
the truck driver to avoid the accident. The Figures [table 4a]lbelow depict typical truck routes within the
Port premises, within the range of the gNB.

2.2.2 Use Case Setup

In Figure 18 we present the high-level architecture and software components of the use case, and Table
depicts real installations on a yard truck and another vehicle exploited for the evaluation of the service
in multiple routes within the Port premises. The system is customizable to deliver either a rapid alert by
means of a small packet that triggers sound alerts for the driver, or by delivering via 5G downlink the
inferenced/annotated video stream at the 5G tablet installed at the driver’s cabin (Table , left). The
annotated video can be additionally delivered to PCT’s central monitoring platform for authorized
supervision.
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Particularly, continuous high-resolution video streams (uplink) are transmitted from the vehicle over 5G
to the CNF residing at PCT’s private cloud node which exploits the NVIDIA RTX 3090 GPU for expediting
the Al service processing time. We define the person in proximity to truck criterion via the yellow
bounded area as shown in Table 5. In case of positive inference (i.e., a person is detected within the
bounding box) rapid alerts are delivered to the truck driver by exploiting the low latency 5G network.
Particularly, inferenced video streams are transmitted over 5G (downlink) to a tablet (Samsung Galaxy
Tab S8 5G) installed on the truck’s cabin, alerting the driver for the event, Table 5 (left). Additionally, the
annotated video is sent to PCT’s central monitoring platform for authorized operations supervision. In
case of negative event (i.e., no person detected in proximity or people detected outside the designated
area) the service is customizable, were either a black screen is shown at the tablet or the annotated
streams are delivered to the truck driver as shown in Table 5 (right) with no alerts.

2.2.3 List of Key Performance Indicators

Table 6 describes the logistics and technical KPIs relevant for UC3 as defined in [2] (D1.4).



Depends on the ML

Model Inference model configuration and
. A-KPI11 . )
Time the video frame size c.f.
Section 2.2.5
Depends on the ML
Model A-KPI12 model configuration and
Accuracy/Reliability the video frame size c.f.
Section 2.2.5
End-to-End A-KPI23 <20ms (average)
Latency
One-way Latency A-KPI24 <10ms (average)
Deployment Time A-KPI3 30 seconds (average)
User Experienced A-KPI25 <12Mbps (uplink,
Data Rate average)

User experienced data rate (A-KPI25) is presented thoroughly in Sections 2.3 and 2.4 and is the same
for UC3 (we exploit similar cameras). For this use case, the focus resides in monitoring the per video
frame transmission delay and processing delay and is thoroughly illustrated in the following sections.

2.2.4 Methodology and Measurement Tools

To evaluate the 5G&AI enabled collision warning service we performed various trips/routes within the
Port with 5G coverage (Figure 5). This use case is a mission critical service (with stringent latency
requirements) and has many sources of delay: (i) video legacy operations (encoding/decoding); (ii)
frame transmission delay and (iii) the frame processing time required by the Al service. In the following
we explain our configuration setup to measure the various delay sources, and the use case evaluation.

Cluster Clock Sync: When focusing on mission critical services with tight delay constraints (e.g.,
collision warning systems), it is of paramount importance to accurately measure the delay of critical
decisions, and thus the transmission and processing delay of critical video frames. In a typical setup, a
Network Time Protocol (NTP) is used to synchronize the clocks of computer systems over a network.
However, the accuracy of an NTP server distribution model, can result in several tens of milliseconds
clock difference across the distributed devices. This depends on how symmetric network routes between
the servers and client are, how stable the network delay is and client’s clock, and how accurate are the
servers themselves!. To alleviate this drawback, we connect each k8s compute node (extreme-edge
and cloud) with a GPS receiver (connected via a serial port) creating stratum-1 devices, which also
provide a pulse per second (PPS) signal to sync the local device clocks more accurately with the satellite
system. Table 7 depicts information about the GPS system of cloud and extreme-edge nodes (5G truck,
5G-Crane and 5G-1oT devices) and the achieved accuracy, i.e., the local clock offset from the satellite
clocks as obtained from Chrony. We observe a clock difference of only a few microseconds. In the
following, we exploit this negligible offset to accurately measure the one-way transmission delay of
packets and frames (Figure 20 - Figure 23).

Network configuration: Regarding the conducted experiments we tested LTE, LTE-A and 5G-NSA.
For experiments based on 4G connectivity we exploit two LTE configurations: single carrier LTE,
operating in frequency band B7 with a 20Mhz channel bandwidth, and LTE-A (advanced) where the
device is configured in dual carrier aggregation mode combining B3 and B7 frequency bands, with a

1 https://chrony.tuxfamily.org/index.html
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20Mhz channel bandwidth, each. For the 5G experimentation, we used B20 and N78 frequency bands
for control (LTE anchor) and data plane (NR user plane) functions, respectively, with a 100Mhz channel.

Per frame transmission delay: We measure the transmission delay of the 4K frames over the LTE,
LTE-A and 5G interfaces. To measure the per frame network delay we employ GStreamer? tool with the
Real-time Transport Protocol (RTP) where we create a 4K video streaming session from the vehicle.
On the server side we use tcpdump to capture and timestamp RTP packets as they are observed by
the network interface card at send time, and similarly for RTP packets at reception (client side). To
eliminate clock drift (and deviation) of the devices we employ the stratum-1 clock (GPS/PPS) setup as
explained before. Lastly, by using the Mark-field (Figure 19) of the RTP header we can distinguish all
packets that create a single video frame, and thus calculate the video frame transmission delay over
the various network configurations (from the 5G-truck towards PCT'’s private cloud).
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2 GStreamer is an open-source multimedia framework that provides a pipeline-based architecture for creating multimedia services.
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2.2.5 Results

Detailed evaluation of network KPIs have been presented in Section 2.1 capturing A-KPI-19 to A-KPI125
(see Table 1). Here we present a subset of those KPIs relevant for the use case testing, along with the
comparison of various network configurations (LTE, LTE-A and 5G-NSA) to get more insights in the
performance of the various networks and the 5G&Al-enabled collision warning system requirements.
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The results obtained for the 5G-NSA network are similar to the ones presented in Section 2.1.4.2. With
respect to the various network configurations (Table 8) we observe (on average) about 480Mbps
downlink for 5G, 190Mbps in LTE-A and about 100Mbps for LTE, whereas in uplink we observe about
120, 90 and 30Mbps, respectively (A-KPI20). Evidently, the additional spectrum resources of 5G allow
for higher bandwidth availability, enabling higher data rates. Considering network latency (Figure 24),
we provide our measurements for packet round-trip times (RTT) in all network configurations measured
via ping. For the LTE configurations (no significant difference is observed between LTE and LTE-A) we
recorded about 28ms RTT time (on average), whereas in 5G we measured latency of about 18ms (A-
KPI23).

Figure 25 shows our measurements corresponding to the transmission delay of 4K frames for the
different networks, from the camera installed on the truck. We observe video frame latency of about
30ms for 5G, 45ms for LTE-A and about 60ms for LTE, on average. Evidently, the 5G network provides
the faster medium for delivering high resolution video frames which is pertinent for applications with real
time constraints.
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With respect to inference accuracy (A-KPI112) of the Al service, as objects (people) within the highlighted
yellow area (Table 5) are relatively close to the moving vehicle, we observed very few positive/negatives
for YOLOv5Nn and YOLOv5s CNN models [4] and almost none for those presented in Table 9. Detailed
evaluation for A-KP112 and human presence detection is shown in Section 2.3.5 where the service is
challenged to detect people at distant locations as captured by the 5G-loT nodes deployed on fixed port
infrastructure. For the inference time (A-KPI11) we illustrate on Table 9 the effect of the video frame
size® and YOLOv5 CNN model size [4] on the inference time for the cloud deployment (average results
for 30K frames). Evidently, the general rule of thumb as also illustrated by the values below, is that the
inference time increases, when we use higher resolution video frames or a more complex CNN model.

SD HD FHD 4K

12.9 35.1 66.2 245
10.1 18.7 37.3 133

8 11.8 23.2 7

To understand the end-to-end service delay (e2e-SD) when exploiting the cloud infrastructure for the
collision warning service we aggregate the following delay sources: frame transmission delay (Figure
25), the Al service inference time (Table 9), and finally the alert delivery delay. For the alert delivery we
test two scenarios; (i) a small packet notification which triggers an audible notification, or delivering
the full inferenced video stream at the tablet (5G downlink) installed in the vehicle.

For the alert delivery delay, when transmitting a small packet, e.g., a sound trigger, this can be
considered as a small packet/notification to the system of the truck and is measured as half-RTT, or
one-way latency (Figure 24), i.e., less than 10ms for 5G. Hence, the e2e-SD is approximately 30ms for
the frame transmission delay, 23ms of frame processing time (e.g., FHD, vbm) and about 9ms for
triggering the alert, accumulating a total latency of about 62ms for the 5G-NSA network. The following
table summarizes the e2s-SD for all network and CNN model configurations at the cloud deployment
scenarios.

SD HD FHD 4K
LTE ISTE- 5G LTE ISTE- 5G LTE LTE-A 5G LTE LTE- 5G
A A A

86.9 71.9 50.9 109.1 94.1 73.1 140.2 125.2 104.2 319 304 283
84.1 69.1 48.1 92.7 7.7 56.7 111.3 96.3 75.3 207 192 171

82 67 46 85.8 70.8 49.8 97.2 82.2 61.2 151 136 115

Evidently 5G provides the smallest e2e-SD for all cases. In the case of delivering the inferenced video
stream at the tablet we showcase in the following the glass-to-glass experimentation. In more detail at
the tablet we use envyen, an app that shows current time at ms accuracy and we face the camera to

% Note that the frames are transmistted over 5G uplink at 4K resolution, and are then resized by the ML service to expedite the
processing time.
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the tablet to show the end-to-end application layer delay. This includes the frame transmission delay
and frame processing time as demonstrated in Figure 25, Table 9 and Table 10, but also the video
application layer latency that includes encoding and decoding operations (H264, @20fps) of video
frames. In Figure 26, the yellow boxes indicate the added delay induced for creating an additional video
session from the cloud node towards the tablet via gstreamer. Evidently, higher resolutions (e.g., 1080p,
4K) and higher frame rates (e.g., 10fps, 30fps) require more data to be processed, increasing encoding
and decoding times. Additionally, the hardware capabilities of the camera, software configuration of the
gstreamer pipelines, codec complexity (H.264 or HEVC) and the hardware capabilities of the UE for
efficient decoding, also contribute as potential sources of delay, but also cases for improvement.
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The results in Table 11 represents streaming on the downlink HD video at 20fps with H264 codec and
gstreamer. On the righthand side of each figure, we observe current time and on the left-hand side we
see the delay, i.e., past time. On average, we observed about 200-250ms of delay. When using higher
framerate or higher resolution we observed larger values which would render the collision warning
system impractical. However, this is not attributed to the 5G network delay or, the Al processing delay
(as show in Figure 25, Table 9 and Table 10), but rather on the inherent latency delay sources of video
streaming sessions as discussed above.
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In summary, for the collision warning system based on audible alerts the total latency can be as low as
50ms (depending on the configuration points shown in Table 10), whereas for the case where the
inferenced video streaming is delivered to the truck this delay can be up to 250ms. Considering the
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speed limitations within a port environment at 20Km/h or 5.5m/s the truck will be roughly ahead about
0.3 meters for the audible alert and 1.5 meters for the inferenced video stream, alerting the drive in more
detail about the visual environment in the truck’s vicinity. Hence, the two setups should be used in
conjunction for mission critical services such as collision avoidance.

Finally, we evaluate A-KPI3 (Deployment Time) of the CNF which is the same for UC3, UC4 and UC5
and is presented only in this Section. Figure 27 depicts the OSM deploy time extracted from the open
source MANO (OSM) manifest deployment logging (osm-deploy on the x-axis), as well as the CNF
image pull time for downloading the ML image at the respective host (extreme-edge or cloud). The
results are average values over 50 measurements. We observe first that the image pull time for UC4 is
about 2.5 minutes (which is basically determined by the host’s throughput and the image size), whereas
the deployment time from OSM (Release 13) for both cloud and extreme-edge orchestration decisions
takes about 30 seconds, i.e., for the CNF to be active and running in the kubernetes cluster.

+

~

o

o

S

w

2
==

Service Deployment Time (Minutes)
~

-

—r—

uc3-uc4-CNF-img-pull uc5-CNF-img-pull osm-deploy

2.3 UC4: Optimal surveillance cameras and video analytics
2.3.1 Description and Motivation

Frequentincidents involving boom collisions, gantry collisions or stack collisions along with the presence
of stevedoring personnel within the Port area make the risk for serious bodily injuries considerable.
Hence, detecting the presence of people in high-risk areas, e.g., areas with intensive crane and/or truck
operations, is of paramount importance for the Port operator for ensuring a safer environment in daily
operations for employees and visitors. Additionally, Al-enabled surveillance can further aid Port security
by detecting the presence of people in restricted areas, e.g., close to a warehouse area. Towards this
direction, UC4 focused on the development of a cloud native 5G&Al-enabled human presence detection
service. The developed solution exploits the eMBB service of 5G to transmit high resolution (uplink)
video streams of the relevant areas, which are exploited by the developed ML service for the inference
task of human presence detection and based on the inference result generate in real-time respective
alerts (i.e., live inference/annotated streams to PCT’s central monitoring system or to handheld devices,
e.g., 5G smartphones, exploited by mobile security patrol shifts close by). Figure 28 and Figure 29
illustrate the view angles of the two 4K cameras exploited by the service, with the former (mounted on
quay side crane 31) depicting people in proximity to the rails of the crane, and the latter (mounted on a
pillar at Pier Ill) illustrating an area with increased truck traffic. Figure 30 and Figure 31 depict how the
inferenced video streams (bounded boxes or segmented) are delivered to the central monitoring
platform or handled/mobile 5G devices.
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In addition to the fact that this use case increases safety measures of the employees’ workplace, it also
opens up opportunities to optimize (i.e., redistribute) the use of human resources in different port
operations, e.g. by reducing the patrol frequency at the risk areas (currently frequent patrols are
distributed to inspect risk/prohibited areas), as this service is automated by the use case.

2.3.2 Use Case Setup

Figure 32 showcases the architecture components of the use case, and Figure 33 (including Table 12
and Table 13) depict real installations within the Port area. We exploit two high resolution cameras for
inspecting two areas: a 4K camera deployed at quay side crane (QC) 31 (Area 1, Table 12) which
monitors the area close to the crane’s base/rails (Figure 28), as well as a camera with a view angle
towards an area (Area 2, Table 13) with increased truck traffic (Figure 29). Both areas are considered
high risk areas due to crane operations and moving trucks. The 5G-enabled Al service can be deployed
(as a CNF) on two locations of the 5G-LOGINNOV infrastructure. The first deployment option, i.e., the
extreme-edge, utilizes two NVIDIA Jetson AGX Xavier devices for the two monitored areas; one device
mounted on QC 31 and the other device installed on a Pillar at Pier Ill. For this case, the Al processing
is utilized on the extreme-edge node (i.e., incurring zero network delay as the 4K cameras are connected
to the Jetson node via ethernet), and inferenced uplink 4K video streams are transmitted over the 5G
network to PCT’s monitoring platform. The second deployment option, i.e., PCT’s private cloud,
employees the NVIDIA RTX 3090 GPU equipped on the cloud infrastructure. For this scenario,
unprocessed 4K video streams (uplink) are delivered over 5G to the CNF deployed on the cloud node
(from Area 1 and Area 2), where we exploit the massive computation capability of the node to decrease
the ML processing time, but, at the expense of network delay. Similarly, inferenced video streams may
be delivered to 5G handheld devices (downlink, eMBB) of patrol shifts, or the PCT’s monitoring platform.
Extensive numerical evaluation for both scenarios is presented in Section 2.3.5.
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2.3.3 List of Key Performance Indicators
Table 14 describes the logistics and technical KPIs relevant for UC4 as defined in [2] (D1.4).



Human resource Qualitative
optimization A-KPI9
(person-hours)

Depends on the ML

Model Inference model configuration and
. A-KPI11 . )
Time the video frame size c.f.
Section 2.3.5
Depends on the ML
Model A-KPI12 model configuration and
Accuracy/Reliability the video frame size c.f.
Section 2.3.5
End-to-End A-KPI23 <20ms (average)
Latency
Deployment Time A-KPI3 30 seconds (average)
User Experienced A-KPI25 <12Mbps (uplink,
Data Rate average)

A-KPI23 corresponds to the round-trip time (RTT) values as obtained from the ping tool between the
5G-1oT nodes and the cloud management platform, where we observed on average values below 20ms.
For the 5G&Al-enabled video surveillance the end-to-end service delay includes the delay for the video
encoding and decoding procedures, frame transmission delay, frame processing delay (or inference
time as given by A-KPI11), and finally the delivery of the alert in terms of positive inference. This end-
to-end service value is presented thoroughly in Section 2.2.5. Similarly, A-KPI3 (Deployment Time) was
evaluated in Section 2.2.5.

A-KPI9 refers to the exploitation of human resources (person hours) spent for monitoring, surveillance
and physical patrol shifts (for safety/security applications). Based on legacy procedures (before 5G-
LOGINNOV), PCT utilizes 4 physical patrol shifts per day (2 persons per shift) assisted by personnel at
the video surveillance center. The core benefit of the 5G&Al-assisted video surveillance is on the scale
for concurrent monitoring of the full Port area space (currently about 300 cameras are deployed), in
addition to the current physical assisted patrol/monitoring schedules. Hence this KPIs is shown as a
qualitative KPI, indicating that concurrent (5G&Al-assisted) monitoring of the full Port space could be
achieved through UCA4.

2.3.4 Methodology and Measurement Tools

The ML service for human presence detection was trained by obtaining data from the daily port
operations from the relevant cameras (view angles) depicted in Figure 28 and Figure 29, under varying
light conditions (including morning and mid-day streams). Particularly, three versions of the YOLOVS5 [4]
neural networks were exploited (small, medium and large, for more details please refer to [4]), fine-tuned
via exploiting the 4K frames obtained from the 5G-LOGINNOV cameras. Hereafter, we refer to the three
versions of the developed service as people_v1, people_v2 and people _v3, based on the three YOLOvV5
base models used, i.e., small, medium and large, respectively. The different models vary in size (with
respect to their ML parameters), which has a direct impact in the accuracy of the ML service as well as
its execution time. Additionally, all algorithms can perform resizing of the input image to a specific size
before serving the image to the ML pipeline. For example, a 4K frame can be resized to a Full HD or
lower resolution. This configuration reduces the required ML service processing time per frame, but, it
may also result in loss of information, e.g., people far away from the camera will appear smaller in
resizing, which could result in detection failure. All such parameters are thoroughly evaluated in Section
2.3.5 for the two deployment options (extreme-edge and cloud).
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Finally, a fourth version (namely, people_v4) for the human presence detection service was developed,
where we consider V1 model as the base. In this approach no frame resizing is performed. 4K frames
are used as input, where each frame is split in four equal sized frames (Figure 34). By exploiting the
GPU parallel processing capabilities, the four images are processed concurrently by the CNF residing
either on the cloud or far-edge. This step incurs an additional processing delay (when compared e.g.,
to V1), however, as no resizing is performed, we incur no information loss.

To evaluate the developed ML services, we obtained video footage from the aforesaid 4K camera
installations, spanning across several days and varying working hours, in order to evaluate the service’s
performance under different light conditions (e.g., during morning and mid-day shifts). We present here
the results from 600 selected frames for evaluating the service targeted detection events, i.e.,
presence/absence of people. The extracted stream parts contain events with crowds of different sizes
(e.g., from 2-10 people) where we evaluate the accuracy of the model in detecting all such occurrences.
Additionally, as people are constantly moving, the detection efficiency of the developed ML algorithms
is also put to the test based on different camera angles, and at various distances within each camera’s
field of view. In the following section we provide an extended evaluation of all developed solutions and
CNF placement options (extreme-edge and cloud). For all inferenced results (and positive inferences)
the CNF opens a connection also to the 5G-LOGINNOV database (as shown in Figure 35) to store the
outcome of the processed frames for later inspection (also servicing as the ground truth in our
evaluation).
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2.3.5 Results

Table 16 provides the summary of the results for A-KPI11, i.e., Model inference time, for the 5G&AI-
enabled human presence detection service at the extreme-edge (Figure 36) and private cloud (Figure
37). Evidently as the image resize parameter increases (x-axis) the inference time per frame also
increases for both far-edge and cloud deployments. For instance, resizing a 4K frame to 640p (standard
definition, SD) and considering people_v1 model, we measured about 25ms per frame inference time,
or, about 30fps of inferenced video streaming (Figure 36). For the same case, if the frame is resized to
1920p (Full High Definition, FHD), we obtain about 100ms per frame, or, about 10fps of inferenced video
streaming. Similar qualitative results are observed for all developed solutions. It is also straight forward
to observe that when the CNF is deployed to the cloud (Figure 37), equipped with increased computing
capabilities (compared to the extreme-edge case), the inference time is significantly decreased, e.qg., for
people_v1 and 1920p the inference time is about 10ms, or, 100fps of inferenced video streaming. Similar
results can be seen for the evaluation of people_v2, people_v3 and people_v4.
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In Table 17 we summarize the results according to our evaluation where we showcase for each
configuration the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN), of all developed methodologies (Model Accuracy/Reliability A-KP112). Each row of the table
depicts different resizing options of a particular model. Table 18 depicts performance metrics for all
tested models in more detail. Evidently, the best performance is achieved by the yolov5 large model
(46.5M parameters, vs nano 1.9M, small 7.2M, medium 21.2M, xlarge 86.7M) at an input size of 1280p.
As expected, when the 4K image is resized to SD, we incur information lose, and thus we observe
inferior performance, e.g., less TP, compared to FHD resolution. This observation also applies for all
evaluated cases.




@ 5GLOGINNOV

Inference
No Human

Human

FN: 171

Ground Truth

No Human

TN: 133

Figure 38: LL Athens - people_v1 resized at 640
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Figure 39: LL Athens - people_v1 resized at 1280
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Figure 40: LL Athens - people_v1 resized at 1920
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Figure 41: LL Athens - people_v2 resized at 640
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Figure 42: LL Athens - people_v2 resized at 1280
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Figure 43: LL Athens - people_v1 resized at 1920
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Figure 44: LL Athens - people_v3 resized at 640
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Figure 45: LL Athens - people_v3 resized at 1280
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Figure 46: LL Athens - people_v3 resized at 1920

43



Inference
Human No Human

Hman TP: 432 PN 35
FP: 34 ™: 99
Model Accuracy Precision Recall F1 score

_people_vl(640p) 0658 1000 0633 0775
people_v1 (1280p) 0.880 0.995 0.876 0.932
people_v1 (1920p) 0.970 0.991 0.977 0.984
people_v2 (640p) 0.846 0.997 0.837 0.910
people_v2 (1280p) 0.964 0.996 0.966 0.981
people_v2 (1920) 0.970 0.979 0.989 0.984
people v3 (640p) 0.836 0.973 0.850 0.907
people_v3 (1280p) 0.986 1.000 0.985 0.993
people_v3 (1920p) 0.984 0.998 0.985 0.991
people_v4 0.920 0.989 0.926 0.956

Table 19 depicts the effect of the video frame size (x-axis) and YoloV5 CNN model size (y-axis) on the
inference time, power consumption for cloud and extreme-edge deployments (average results for 30K
frames from PCT camera installations). To measure the average power consumption of cloud and
extreme-edge CNFs, we exploit NVIDIA’s native tools, namely, tegrastats for the Jetson device and
nvidia-smi for the GPU RTX 3090, that isolate the power consumption used by the GPU for processing
video frames. Hence, we measure the energy footprint of the Al services focusing on the video analytics
tasks, i.e., object detection. The general rule of thumb as also illustrated by heatmaps below, is that
inference time and power consumption increase, when we use higher resolution video frames or a more
complex CNN model.
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Figure 48 depicts the 5G uplink experienced data rate (User Experienced Data Rate, A-KPI25), i.e., the
consumed (and necessary) bandwidth utilized by the 4K cameras (relevant to UC4, UC3 and UC5)
deployed within PCT. Each sample point on the x-axis (s1, s2,..,s7) represents the average data rate
over 3600 seconds/samples (i.e., 1 hour of continuous 4K video streaming), totalling an entire working
shift duration of about 7 hours. For clarity we present the results from Area 2 (Table 13 and Figure 29)
as it is similar for the other 4K monitored areas. We observe that the average streaming requirements
are about 9.5Mbps where we also depict the observed upper and lower boundaries, with encoding
mode: H.264, 4K resolution of 3840*2160 at 20fps.
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2.4 UCS5: Automation for ports: port control, logistics and
remote automation

2.4.1 Description and Motivation

Detecting the presence (or absence) of container seals for containers inbound at a port is of paramount
importance for the port operator, as the presence of a seal validates the integrity of the container
contents. It is not rare however for containers to arrive with broken/absent seals and missing content,



& 5

especially when their transportation plan involves transhipments; in such cases, the involved ports
should be able to prove that the container left the port with its seals intact or pay the claimed financial
reimbursements. Typical containers locked and sealed are shown in the following two figures.

A mother vessel at PCT requires (on average) about 3000 stevedore moves (depending on the vessel
size) to complete loading (and/or unloading) operations. Manual seal-presence check requires one
person at the foothold/base of the crane where the quay side crane operations take place (Figure 49),
and about 10-30 seconds to manually inspect each container, until the crane operator proceeds to the
next container movement. Reducing this time by e.g. 3 seconds per container, results to 9000 seconds
(or 2.5 hours) reduction of vessel stay at the port and removes the need for human presence at an area
with high safety risks. Towards this direction, this use case takes advantage of the private 5G NSA
network at the port of Piraeus and advanced computer vision techniques (Al-enabled video analytics)
to automatically detect the presence (or absence) of container seals during the loading (and unloading)
process of vessels, thus automating and expediting the port operations, improving the utilization of
human resources as well as increasing the employee’s safety.

2.4.2 Use Case Setup

Figure 50 depicts the architecture of the use case, whereas Figure 51 showcases real
components/installations. At PCT, the quay side crane (QC) 31 is equipped with a wide-angle camera,
continuously capturing 4K video of the crane’s activity (vessel loading/unloading operations). Following
the compute continuum paradigm, we evaluate two deployment options of the 5G enabled Al service,
i.e., at the extreme-edge (on NVIDIA Jetson AGX Xavier device mounted on the QC cockpit, scenario



& 56

1, Table 12), or at the 5G LOGINNOV cloud node residing beyond the 5G core network of Vodafone, at
PCT’s datacentre, hosting NVIDIA RTX 3090 GPU (scenario 2, Table 13) to accelerate the processing
time of the ML service. In scenario 1 the processing takes place on the extreme-edge node and we
exploit the eMBB service of 5G to deliver uplink inferenced/annotated 4K video streams at PCT’s central
platform for live monitoring of loading/unloading operations. For scenario 2, unprocessed 4K video
frames are transmitted over 5G to the Al container residing at PCT’s cloud node, where the processing
takes place. Numerical evaluation for both scenarios is presented in Section 2.4.5

Live service monitaring
Cloud seal detection ' !

| etrmamar |- ST usueamer}—- fask — Ul J
e L J L

56 [ ML
S ooy L[ MLSeal
1P Camera } - of opency |of S-S50

dv‘. CNF ML Docker Images Scenario 2: Cloud placement
ar

NSACORE () vodafane

RAN vodafone -~
56 A o | 58

|

NFVI Extreme-edge Compute

docker 1 = .' S
86 and NVIDIA RTX 3090 ¢ 56 oy =

u J
3

i

5

5G-LOGINNOV
¥
[

Inferenced
results DB

‘ PCT Datacenter

KNF Catalog - UCS manifests

‘[ NPV Cloud ComputeNodes

[ 15 Grafana O

docker gstreamer F---*

! 1 ML Seal
1P Camera -+ CpenCV H Datection

Scenario 1: Extreme edge placement |

The service orchestration of the ML service and service components has been documented in detail in
[1], including the presentation of the MANO platform (software and hardware wise), service instantiation
flows, lifecycle management operations, etc. As illustrated in Figure 51, Port assets exploited for the
use case validation include QC 31, a 4K camera mounted on QC 31 for continuously monitoring crane
operations, a 5G modem to establish broadband communication between the crane and PCT’s
datacentre, an NVIDIA Jetson AGX Xavier device for facilitating the extreme-edge placement (scenario
1) as well as a dedicated cloud server, located at PCT'’s datacentre hosting an NVIDIA RTX 3090 GPU
to facilitate the cloud deployment case (scenario 2).
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The ML seal detection service is packaged as a CNF (orchestrated via OSM and kubernetes) based on
the described placement options, i.e., the kubernetes worker nodes. The model is composed of two
consecutive ML services: a) container detection and b) seal detection. Particularly, from the original 4K
frames, we first extract the part of the frame which corresponds to the container with focus on the
container door, and in the sequence on the extracted image, we search for the container seal.

2.4.2.1 Container Detection

For the container detection algorithm, we exploit two different versions, hereafter coined container_v1,
and container_v2, where both versions exploit the same seal detection ML model.

For container_v1 a pre-trained U2Net [5] is used to extract a mask of the most salient object in a frame,
in that case the container which passes in front of the camera. The mask is used for background
removal. Then, the image’s contours are calculated and are matched (or not) with the contour of a typical
container.

For container_v2 a pre-trained medium sized YOLOV5 [4] neural network was re-trained on 2000

images with containers and 2000 images without containers. During training the network’s first 23 high-
level layers were frozen, meaning that only the last layer of the network was fine-tuned to the task.

2.4.2.2 Seal Detection

Seal detection: Another medium sized YOLOV5 [4] network was trained from scratch for 100 epochs
on a manually annotated dataset of images with containers and their seals. The dataset consists of
50.000 images, which was augmented via random perspective transformations into 500.000 images. To
avoid any overfitting, the best scoring model on the validation set was stored.

2.4.3 List of Key Performance Indicators

Table 20 lists the logistics and technical KPIs relevant for UC5 as defined in [2] (D1.4).

Vessel Operation 16% (estimated average)

Completion Time A-KPI10
125ms @extreme-edge
Model Inference A-KPI11 35ms @cloud
Time
(average)
Model Depends.on thg ML
Accuracy/Reliability A-KPI12 model conﬂgurauon c.f.
Section 2.4.5
Human resource Qualitative
optimization A-KPI9
(person hours)
Deployment Time A-KPI3 30 seconds (on average)
User Experienced A-KPI25 <12Mbps (uplink,

Data Rate average)
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A-KPI10 explains the reduction of vessel stay at the port premises, i.e., the time required for the vessel
operations to be completed. Figure 52 depicts for the period of 01-01-2022 to 10-10-2023 the number
of containers movements (load/unload operations) realized at the Port of Piraeus. The time required for
a single container move is approximated at about 2 minutes (including the manual seal check process).
This value is a practical observation as it depends on various factors, e.g., cargo type and weight, the
cargo weight distribution, position of the container on the vessel, crane move type, e.g., twin/tandeem,
weather conditions, crane operator experience, etc. Given these considerations, if we allocate 10
seconds for the container seal (manual) process, UC5 (automates) expedites (on average) the container
movements for Coastal vessels from 108.46 to 90.38 minutes, for Feeder vessels from 3085.02 to
2570.85 minutes and for Main trade vessels from 3821.78 to 3184.81 minutes. On average this results
in about 16% reduction in the vessel stay at the Port premises.

For the period Jan 1,2022 to Oct 10, 2023:
Average
containers

=L LI

Vessel type  Count of Vessel Calls Max Vessel size (m) Min Vessel size (m) Average Vessel size (m) Average of Container Quantity ~Average stay in terminal (days) per day

Coastal ‘ 204 | 222 | 100 ‘ 125 | 344,00 ‘ 0,34 108,46
Feeder ‘ 2359 | 335 | 121 ‘ 192 | 846,12 ‘ 4,27 3085,02
Main Trade ‘ 1155 | 401 | 189 ‘ 345 | 2140,86 ‘ 2,27 3821,78
Grand Total ‘ 3718 | 401 | 100 ‘ 236 | 1221 ‘ 2,29 7015,26

A-KPI9 refers to the exploitation of human resources (person hours) spent for the seal check process.
Legacy procedures, i.e., manual seal check (before 5G-LOGINNOV) occupied about 78 hours per week
handled by 2-person shifts. Human involvement can be completely removed from this service based on
the accuracy of the Al service, and is qualitatively assessed for UCS5.

2.4.4 Methodology and Measurement Tools

The dual ML solution was trained by obtaining data from the daily port operations at PCT. The quality
of such a system is determined by the order of magnitude of data used to train and re-train the models
(as described in 2.4.2), in order to increase the accuracy (i.e., correct inference) of the model, and thus
the efficiency of the service. To evaluate the developed solution, we obtained more than 30 hours of
footage from the 4K camera installed on QC 31, spanning across several days and varying working
hours in order to obtain video feed with different light conditions (during morning and mid-day shifts).
The evaluation presented in Section 2.4.5 includes 1000 container moves, where each container move
is composed of several frames capturing the motion of the crane at the loading/unloading phase. As an
example, Table 21 depicts part of the frames for a single container operation at 4K resolution and 25
frames per second. The detailed test protocol for this service is described in [3].




For all inferenced results (and positive inferences) the CNF opens a connection also to the 5G-
LOGINNOV database (as shown in Figure 53) to store the outcome of the processed frames for later
inspection (also servicing as the ground truth in our evaluation).
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Finally Table 22 illustrates snaphost of the user interface created for UC5, where the inferenced video
stream is delivered to the central monitoring palfrom along with several data cards depicting the
productivity level of the crane (e.g., how many container movements have been performed), network
KPIs such as data rate and latency, as well as ML KPIs such as the inference time.



2.4.5 Results

Figure 54 provides the summary of the results for A-KPI11, i.e., Model inference time, for the 5G&AI
enabled container seal detection service at the extreme edge and cloud deployment options of the 5G-
LOGINNOV compute continnum. We provide the results for both developed solutions (container_v1 and
container_v2) as described in Section 2.4.2. Note that each solution utilizes two models (container
detection and seal detection) for the end-to-end service, which are sequential, thus, the service time is
the aggregation of container time and seal time as depicted in the x-axis, i.e., about 170ms per frame
for container_vl model and about 120ms for container_v2, at the extreme edge. Hence, the live
inferenced fps acquired via the (relatively) limited compute capabilities of the NVIDIA AGX Xavier
extreme edge node is about 6fps and 9fps for container_v1 and container_v2, respecrtively. Similarly,
moving to the cloud placement of the CNF exploting the NVIDIA GPU RTX 3090 compute, the acquired
inferenced streams are about 14fps for container_v1 methodology and about 25fps for container_v2.
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In Table 23 we summarize the results according to our evaluation where we showcase for each
configuration the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN), of the two developed algorithms (Model Accuracy/Reliability A-KPI112). The first row shows the
efficiency of both solution where we focus only on the container detection sub-task, whereas the second
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row is dedicated to the accuracy of the seal detection task. We observe that for both tasks’ container_v2
has a better performance with higher TP/TN values and lower FP/FN values.

Inference Inference
container Mo container ainer

container TP: 356 FN: 118 container TP: 456 FN: 18

Ground Truth
Ground Truth

No container FP: 117 TN: 40785 Mo container FP: 0 TN: 40902

Inference Inference
seal No seal

seal TP: 161 FN: 114 seal TP: 231 FN: 44

Ground Truth
Ground Truth

No seal FP: 36 TN: 41061 Ho seal FP: 75 TN: 41022

A further and more detailed analysis for the accuracy of the developed solutions is presented in Table

24.

Model
container_v1 0,994320379 0,752642706  0,751054852  0,751847941
container_v2 0,999564965 1 0,962025316  0,980645161
seal_v1 0,996374359 0,817258883  0,585454545  0,68220339
seal_v2 0,997123659 0,754901961 0,84 0,795180723

Figure 59 depicts the 5G uplink experienced data rate (User Experienced Data Rate, A-KPI125), i.e., the
consumed (and necessary) bandwidth utilized by the 4K camera installed on QC31 crane. We exploit
the same camera hardware and (configuration options for the 4K streams) as in UC4. Similarly, the
sample point on the x-axis (s1, s2,..,s7) represent the average data rate over 3600 seconds/samples
(i.e., 1 hour of continuous 4K video streaming), totalling an entire working shift duration of about 7 hours.
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We observe that the average streaming requirements are about 9.5Mbps where we also depict the
observed upper and lower boundaries, with encoding mode: H.264, 4K resolution of 3840*2160 at 20fps.
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Next, we evaluate A-KPI3 (Deployment Time) of the CNF for UC5. Figure 60 depicts the OSM deploy
time extracted from the open source MANO (OSM) manifest deployment logging (osm-deploy on the x-
axis), as well as the CNF image pull time for downloading the ML image at the respective host (extreme
edge or cloud). The results are average values over 50 measurements. We observe first that the image
pull time for UCS5 is about 6.5 minutes (which is basically determined by the host’s throughput and the
image size), whereas the deployment time from OSM (Release 13) for both cloud and extreme-edge
orchestration decisions takes about 30 seconds, i.e., for the CNF to be active and running in the
kubernetes cluster.
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2.5 UCTY: Predictive Maintenance
2.5.1 Description and Motivation

Al-assisted predictive maintenance powered by 5G technology becomes a pivotal tool in ensuring
efficiency, safety, and sustainability in the maritime industry and the logistics supply chain. Particularly,
the focus of this service within 5G-LOGINNOV and PCT reside in yard truck Port assets (about 200
trucks) that facilitate the daily port activities, and the prediction of possible breakdowns, reduction of the
downtime for repairs, optimise stock of spare parts, increase the service life of yard vehicles and
enhance operational efficiency through minimisation of breakdowns. The proposed tool captures
historical and recent status data for the assets in question, utilized by the ML algorithm and driving a
per yard-truck data driven approach (schedule of purchases, storage of parts, proactive maintenance),
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by taking advantage of 5G technology that provides a flexible, reliable and predictable environment to
remotely keep track of the connected assets on a rea-time basis.

2.5.2 Use Case Setup

In addition to the video camera installed on the trucks for the collision warning service presented in
Section 2.2, other on-truck sensors are utilized for extracting telemetry information from the trucks
engaged in various daily port operations. Specifically, a 5G gateway (based on either Teltonika’s
RUTX50 industrial 5G gateway or Robustel R5020 5G loT Router) is set up on the trucks to enable live
data collection from the vehicles, and interconnection with the central traffic and operations monitoring
system (TMS) located at PCT’s datacentre, similar to UC3. The 5G gateway is interconnected (via
ethernet) with various on truck data sources including CAN-Bus, container weight sensors, container
presence sensors and GNSS for live monitoring of the performed work/activities. Figure 61 depicts the
visualization tool for the accumulated telemetry.
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In addition to the live monitoring of the truck operations, the main focus of the proposed use case is to
exploit an Al-assisted predictive maintenance service exploiting CAN-bus data, historical maintenance
and break down data to predict future breakdowns of yard trucks as well as the parts that will be affected
and relative spare parts required for the maintenance.

2.5.3 List of Key Performance Indicators
Table 25 describes the logistics KPIs relevant for UC7 as defined in [2] (D1.4).

Parts in Stock A-KPI13 Improved
Vehicle A-KPI14 Improved
Breakdowns
Vehl_cles Under A-KPI15 Improved
Maintenance
Vehicles Improved
Unexpected A-KPI16
Breakdown
Maintenance A-KPI17 Improved

Costs of Vehicles

Assets Idling A-KPI18 Improved
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2.5.4 Methodology and Measurement Tools.

The use case of Al-assisted predictive maintenance involves the yard trucks of PCT engaged in the
daily port operations. Predictive maintenance utilizes 5G-enabled condition monitoring, advanced
inspections, and data analytics to predict yard truck component or equipment failure. It comprises
different analytical algorithms in the context of predictive maintenance, providing a data-driven
preventive maintenance schedule as well as a data-driven schedule of purchases. In order to provide
this output, the Al-enabled service is connected to the TMS (Figure 61) to draw CAN-Bus data from
trucks as well as to PCT’s Enterprise Asset Management System (EAMS) to draw historical
maintenance data — both scheduled maintenance (as instructed by the OEM) and breakdowns, including
truck parts utilized for repairs. The tool gives the flexibility to the user to select the historical data period
that the prediction will be based on as well as the period and the specific spare parts for which the
predictions need to be made (Table 26).

Historical telemetry, maintenance and breakdown data of the yard trucks
fleet for a period of two years

List of predicted dates of breakdown of yard truck (parts) along with spare
part requirements for the fix/replacement

Accuracy of prediction

PCT decided to focus on the prediction of fast-moving parts such as engine filters and tires (c.f. Section
2.5.5), that are purchased on a quarterly basis separately from parts that are rarely subject to
breakdowns and most of the time, their life-span exceeds one year. Focusing on fast-moving parts
allows to reduce inventory storage space and achieve cost savings. Two case scenarios were tested
for PCT yard trucks. The purpose of the first scenario was to determine the maintenance schedule (i.e.,
proactive maintenance) for yard trucks while the second scenario focused on determining the number
of the spare parts required for maintenance.

Particularly, for each separate vehicle the following information is stored on a weekly level.

Total number of kms the vehicle has traveled during the past week.

Total time in hours the vehicle was in move during the past week.

Total cargo weight transferred by the truck during the past week.

A list of maintenance actions performed on the specific vehicle during the past week. Each
maintenance action essentially corresponds to the replacement of a specific part. In this
work, we focused on 5 of the most « fast moving » parts, namely P1, P2, P3, P4, P5 (c.f.
Section 2.5.5).

The ML algorithm uses as input the total number of kms the vehicle has travelled, total time in hours the
vehicle was in move and the total cargo weight transferred by the vehicle since the last replacement of
each one of the considered parts P1,...,P5, a total of 15 measurements. The output consists of
estimations of the aforementioned quantities until the next replacement of each part, a total of 15
estimations.

Of note, the labels needed to carry on the supervised learning task at hand can be derived from the
stored data in a straightforward manner.

A variety of basic regressors within a multi-output estimation scheme were used to attack the problem.
Among them, and for randomized 5- to 10- fold cross validation schemes, Scikit's [1] k-Nearest-
Neighbors and Decision Tree regressors outperformed all the rest with no significant performance
differences between them. The aforementioned regressors demonstrated mean absolute errors which,
when projected in time by the future schedule of each vehicle, resulted in timely estimation errors in the
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order of 1 to 2 weeks. In the scope of quarterly based spare part purchases policy followed by PCT this
is well within the accepted margins.

2.5.5 Results

In order to determine the effects of applying the maintenance schedule suggested by Al-service we
compare the decisions of authorized Port personnel based on experience, against the suggestions
(when to take maintenance actions and which parts to purchase) derived by the ML service, for 2
quarters, i.e., Q4 of 2022 and Q1 of 2023.

To evaluate A-KPI14 (Vehicle Breakdowns), A-KPI15 (Vehicles Under Maintenance) and A-KPI16
(Vehicles Unexpected Breakdown) we exploit the evaluation of the algorithm based on the accuracy of
the prediction in terms of true/false positives/negative rates. In more detail we observed the following;
true negatives (i.e., no breakdown predicted and no breakdown actually occurred), were measured at a
rate of about 85%, and true positives (i.e., breakdown predicted and occurred within 2 weeks), were at
a rate of about 81%. Hence, if the suggested maintenance scheduled was applied and relevant parts
predicted to fail were replaced according to the predictions, a direct impact can be expected on the
aforementioned KPlIs.

To evaluate A-KPI13 (Parts in stock) a comparison between the original purchase plans made by the
port’s personnel and the plans made by taking into consideration the estimations of the ML-system is
depicted in Table 27, which were found satisfactory by the personnel responsible for the vehicles’
maintenance planning, showing Q4 of 2022 and Q1 of 2023. Potential savings are attributed to A-KPI18
(Maintenance Costs of Vehicles).

Part Description Qty Qty Qty Potential
Purchased Occurred Predicted Savings

(Q4/Q1) (Q4/Q1) (Q4/Q1) (Q4/Q1) (%)

Tyre 1200R22, 5 18PR 230/220 210/218 218/213 5.21/3.18
Fuel Prefilter with water trap (Donaldson P550848 50/45 37/41 35/39 10.81/13.33
Kalmar)

Hydraulic filter (Donaldson P171543) 70/65 53/58 59/61 15.7/6.1
High capacity Allison transmission filters (P/N 75165 60/54 71/59 5.33/9.23
29558329)

Main Fuel Filter (Donaldson P550880) 40/35 30/28 27/32 3.33/8.57

A positive impact on A-KP118 (Assets idling) can be also deduced from the abovementioned activities.
Al assisted predictive/proactive maintenance scheduled (instead of reactive maintenance) based on the
suggestions of the designed ML-system and carried out during idle periods, e.g., during shift changes,
and not at the event of an unexpected breakdown, can result into time savings (i.e., less idle time)
between 40-80 minutes (based on PCT'’s track record of such events). Additionally, in the case of
proactive maintenance no disruption to related port operations would be incurred compared to the case
were the truck needs repairs during an operation, e.g., while carrying a container to/from a vessel. Hence
proactive maintenance, not only improves the assets idling time via data driven proactive maintenance
schedules, but also maintains the work flow of other operations chains, e.g., the sequence of vessel
loading uninterrupted.

We note that in Table 27, there are cases where the Predicted Quantity fell short of the actual number
of corresponding events (Occurred Quantity) during the Quarter under consideration. For the two
quarters under consideration port personnel did not find this problematic, since there was always a small
stock of pertinent parts. Adding a small epsilon in the predicted values may practically solve the majority
of such cases which will impact A-KPI13 and A-KPI17. Regardless, results show that finer tuning of the
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algorithm, accomplished via training with more data and testing for more quarterly periods can be
expected to result in more accurate and safer predictions, and more direct saving for the port assets
and equipment.

Finally, by estimating the spare parts demand for a certain period, procurement departments can
optimize their ordering and receiving processes, which can lower the administrative and parts costs -
Maintenance Costs of Vehicles (A-KPI17)- and improve the overall delivery efficiency of spare/repair
parts. Additionally, Inventory space for spare parts can be minimized and better managed A-KPI13
(Parts in stock).

In terms of operational efficiency, proactive maintenance and reduction of breakdowns entails many
benefits for the port operator. The straightforward case is the reduced number of breakdowns that mainly
affect the operations performed for vessels. Containers (as also illustrated in Section 2.4) are
loaded/unloaded to ships following a specific sequence (flow) considering different parameters including
the final destination of the cargo, cargo type, the weight and weight distribution, ensuring the
minimization of stevedore moves (for quay side crane operations), the stability of the vessel and safe
lashing/unlashing of containers on the vessel.

A single truck failure (e.g., engine breakdown resulting in immobilization of a truck) during a container
movement/operation, requires restructuring of the vessel loading/unloading plan, either reserving the
area around the broken truck for on-site repairs or transferring the container to another truck using a
straddle carrier or a reach stacker and towing the broken truck to the designated repair area. Evidently,
even if the actual repair time is usually short, the overall time required to resume truck operation after a
breakdown is much longer.

2.6 UC2: Device Management Platform Ecosystem
2.6.1 Description and Motivation

The device management platform ecosystem serves as a robust backend system that is specifically
designed to track and monitor vehicles, including trucks, and provide valuable feedback to operators
such as managers and logistics teams. In the context of this project, we utilized trucks that were already
being monitored on the platform, both within and outside of the port area. While the majority of their
travel occurred outside the container terminal, it was essential to consider their time, space, and
occupancy in the vicinity of the port as it affects the in-port operations, closely intertwined with yard
trucks.

To make informed decisions about traffic conditions outside, towards, and within the port, we relied on
the data available through the platform. This information was derived from a GPS location-based
system, encompassing parameters such as timestamp, speed, location, and vehicle-specific data like
engine status (idling, off, or moving). By leveraging this data, we were able to assess traffic and mobility
conditions both outside the port and within its premises. Further analysis allowed to get insights of port
operation, focusing the truck loading procedures.

During the project review, it was emphasized that showcasing and capitalizing on the capabilities of 5G
technology within port operations was of an interesting concept in relation to the device management
platform ecosystem and the project’s context. Following the recommendations and engaging in
discussions with fleet experts, we identified a specific need expressed by truck drivers — the desire for
improved awareness of their surroundings while manoeuvring. This need presented the perfect
opportunity to harness the capabilities of the platform, address feedback from reviewers, utilize the
features of 5G (including high bandwidth, low latency, and support for multiple subscribers with high-
quality video streaming), and ultimately develop a new product while respecting the security and
personal data of the drivers.
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The result of this was the creation of a mobile application specifically tailored for the context of this
project, designed to complement the existing 10T Device Management Platform. The mobile application
encompasses two distinct functionalities. Firstly, it offers GPS location tracking and provides drivers with
relevant information regarding port operations. Secondly, it provides a multi-camera video feed from
other trucks equipped with the same application. Thirdly it offers a manager / driver communication
means altogether. Essentially, the product serves as a unique video conferencing application that
facilitates parking trucks by offering real-time video feeds from different perspectives, as a
communication tool between fleet managers and drivers and a tracking device. This innovation
significantly enhances drivers' situational awareness during manoeuvring and contributes to overall
operational efficiency within the port.

2.6.2 Use Case Setup

I0T platform is utilized in the project in 2 distinct methods. First its data from trucks adjacent to the port
and inside the port are used to enhance route and fuel efficiency and reduce empty truck runs. Second
the platform is extended with video collection and broadcasting capabilities targeting a newly developed
mobile application; this was a request that originated during the review and was well received comment
that added.

The following assets were used during the testing of the living lab.

Port Assets
o Port area
o Trucks (from VI customer base) — 21 trucks used.

e Software components
o Linux Based VM
o Mobile Application Development Software (Android Mobile Application)
o Custom coded web server (data capture server)
o Custom desktop and mobile application for testing (Ping, open close connections, video

rate logging)

o Video conference open-source server — GRPC Live Kit server
o Existing loT Platform — Staging Environment for RnD

e Software Libraries
o Track and Know tools — Hotspot Analytics

e Hardware components
o loT Devices — Teltonika FMB130, FMB640
o 5G Enabled mobile phones: Samsung A22 5G
o 5G Modem RM500Q-AE

¢ Information on trucks, technologies, emissions, and standards.

¢ Identification of truck operations within the port related to external trucks

o Operational of external truck tasks
= Entrance to the main gate
» Loading/unloading at the main stash
= Trip to the exit gate
=  Weigh measurement
=  Customs paperwork
= Exit from gate.

o Operational duration
= Average duration since entry up to the main square loading 15,4 minutes
= Average duration since the completion of the task at main square up to the exit

gate is 25,3 minutes.
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2.6.3 List of Key Performance Indicators
Table 28 describes the logistics and technical KPIs relevant for UC2 as defined in [2] (D1.4).

Lo
Percent of Empty A-KPI4 Qualitative
Containers Runs

. Lo
Mean_ tlmeT of AKPI5 Qualitative
container job
Time needed for the <55ms for 5G
device to open a A-KPI6
network connection
CO2 Emissions A-KPI7 Improved
Fuel Consumption A-KPI8 Improved

End-to-End Latency A-KPI23 <20ms (average)
One-way Latency A-KPI24 <10ms (average)

Depending on the number of
A-KPI25 concurrent application video streams
c.f. 2.6.5

User Experienced
Data Rate

KPIs A-KPI4, A-KPI5, A-KPI17, A-KPI8 are relevant to the Device Management Platform and the location
of truck inside and outside targeting to reduce the time an external truck operates in the port and
increasing fuel efficiency. These scenarios don’t require the capabilities of the 5G network in terms of
latency or data rate, but rather the capabilities of 5G to support a massive number of connected devices,
i.e., the fleet of external trucks (i.e., device density) along the route towards/from the port area.

For A-KP14 and A-KPI5 limited data were collected from the operations of external trucks. Due to the
sensitivity and strict confidentiality of such port operation processes, it was not allowed by the authorities
to collect data of the size of magnitude that will allow an adequate analysis and evaluation of the KPIs.
Hence a qualitative assessment took place and is reported in the Section 2.6.5.

For KPIs A-KPI6, A-KPI23, A-KPI24, A-KPI25 this UC also includes a mobile application as “Around
corner camera” to assist truck drivers while parking or manoeuvring. In this added scenario, real-time
crystal-clear video feed from other trucks is essential as the reasoning is to replace the truck mirrors
while manoeuvring when the mirror (or onboard camera) is not sufficient.

2.6.4 Methodology and Measurements Tools

As mentioned, this use case holds two different cases in effect. The first case is to leverage the external
truck location outside and inside the port. 14 Vehicles were estimated for the experiment, but 21 where
actually used, since more trucks operated at the port since the beginning of the project. The following
data were gathered from the trucks, speed, GPS coordinates, timestamp and engine status (moving,
idling and off). This information is used, along with PCT input of the port operations to redistribute traffic
towards the port and to estimate possible fuel savings and in effect, NOx and CO2 reduction. The whole
area of the port was used, not only the area with 5G coverage, since for this part of the use case the 5G
network doesn’t not offer any additional benefits.

Figure 62 depicts the truck depots participating in the analysis. The trucks originate from adjacent areas
of the port (red circles 1 to 5).



Routes from these vehicles were recorded during the test period of April / May 2022 along with older
data of the area to get the background traffic of the area.

e Vodafone Device Management Platform (outside and inside the port area)
The Device Management Platform was used to visualize the actual routes of the trucks and also the
simulated routes. This gave an overview to an expert in port logistics to suggest the possible alternatives
that could potentially offer better fuel economy. Details of the VFI trucks are shown in the following table.

TRUCK_NAME TRUCK_ID LOGISTICS_OPERATOR DEVICE

Truck01 23459 Customer A FMB120

Truck02 23460 Customer A FMB120

Truck03 23463 Customer A FMB120

Truck04 24041 Customer B FMB120

Truck05 26753 Customer C FMB120

Truck06 26757 Customer C FMB120

Truck07 26761 Customer C FMB120

Truck08 26762 Customer C FMB120

Truck09 39264 CustomerD FMB120

Truck10 39265 CustomerD FMB120

Truck11 39270 CustomerD FMB120

Truck12 9418 CustomerE FMB640 +5 Fuel_Can bus
Truck13 9415 Customer E FMB640

Truck14 23462 Customer A FMA120

Truck15 9952 Customer F FMB630 +5 Fuel_Can bus
Truck16 9958 Customer F FMB630 +5 Fuel_Can bus
Truck1?7 18109 Customer G FMB640 + 5 Fuel Can Bus
Truck18 18110 Customer G FMB640 + 5 Fuel Can Bus
Truck19 18112 Customer G FMB640 + 5 Fuel Can Bus
Truck20 18114 Customer G FMB640 + 5 Fuel Can Bus
Truck21 18115 Customer G FMB640 + 5 Fuel Can Bus

In this dataset only truck data where used, not small passenger cars with different acceleration and
deceleration capabilities where used. Once data were captured and analysed (traffic and runs) we
performed scenarios where trucks followed recommendations on the traffic, empty spots and container
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loading. The analysis process was based on hot spot analysis using the expertise of the Track and
Know project (H2020 No 780754). Hot spots idling and non-moving trucks were identified. While loading
/ unloading a truck a hot spot was expected since at that time the truck is not moving but idling. However
other locations within the port premises that identified as hot spots were areas of truck waiting. This
information was used to deduce wait times and unnecessary idling engine times. The visualization tools
provided by the device management platform provided an easy identification of the hot spots. The
benefit and possible reduction of wait times, CO/NO emissions (A-KPI17) and fuel reduction was possible
by holding trucks outside of the port at the heaviest peak times and at best not to depart from origin.

As can be seen on the following map (Figure 63), the external trucks are seen at the following operating
points, for 2 opposite operations.

e An empty truck arrives and picks up a container from the stack.
e Aloaded truck arrives and leaves a container to the stack.

The stash is the place where the containers remain before being loaded at the ship or when unloaded
from the ship. The empty truck passes through the customs with no delay as no paperwork is required,
on the other hand loaded trucks are expected to pass paperwork through customs. This port operation
is the first hot spot (regarding delay and wait time with idling engine). Once the truck is in the yard, the
distance travelled is within 1Km range. The truck is headed at the loading crane. This operation takes a
couple of minutes. However, delays can occur; this is the second hot spot.

The second case was the parking assistant. To achieve this a mobile application was developed
(screenshots follow). This is a mobile application software that relies on the IoT Platform to manage
driver login and location data, whereas is extended with multicast video capabilities for live video feed
from various sources. Within the test context 4 vehicles were selected for testing. During the testing a
truck would manoeuvre while the driver would view the truck and its surrounding from nearby trucks.
Especially on 90° corner parking this feature was well received. While modern trucks have cameras,
this scenario showcased an extra security feature; at areas that external cameras don’t have visibility.

5G Up/Down Link

S \.'IServer
o
D o O

Trucks fitted phones with
application “I see what you see”
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Following the scenarios defined in D3.2 storyboards parking / moving scenarios was carried out with
the use of the mobile application as a parking assistant. Of course, for safety reasons the truck drivers
used outside assistance and used their mirrors as is required by traffic law.

Wisssome 0BGl u\ w4708 LR 20 s\
° Video parking °

S

2.6.5 Results

In order to test the latency (ping) 2 methods where used. One with the application Network Analyzer
Pro (mobile phone Samsung A22 5G) and a second option via a coded C# application using the
System.NET.HTTP library to perform the ping action and log the results. A laptop with the 5G Modem
RM500Q-AE connected at the UTP port. A subset of the results is shown in the following figure, where
we observe on average 16.3ms (A-KPI23) for the 5G network, and in coherence with the results of
Section 2.1.4. Similar, to Section 2.1.4, A-KPI124 (one-way-latency) is assumed half RTT, i.e., on
average <10ms.
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In order to test the A-KPI6, a web server was set up on the other side of the server. A series of HTTP
requests were performed and the dates where logged on both the client machine and the server. Both
machines where UTC coordinated via the internet. This duration includes not only the traffic, but the
SSL certificate handling, server package decoding and DB storage. The same packet of 238Bytes was
used as payload, this packet requires 48ms to be logged in the database a local server; including the
CPU and DB resources required. For the test scenario 600 attempts took place and recorded the time
left and registered at the database. During that, the time was 65 ms for the 4G network and 55 for the
5G network. This leads to the expected average ~17ms one way for the 4G and ~8ms for the 5G. The
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half travel time includes firewall and internal data routing. While this isn’t a pure network only test it
indicates the reduction of time for 5G in contrast a 4G connection.
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The Close/Open scenario was selected to see whether the time to attach to network (data) is different
(lower) in a 4G network than a 5G network. For this purpose, a test app was developed in Flutter SDK
that pings a server, detects the network connection time between on and off. Modern versions of Android
do not allow the program to alter the connectivity, but this app detects the time it takes to reconnect.
The result for 10-minute test didn't reveal any noticeable difference as the average duration was in the
order 950-1150 milliseconds on both networks. This duration includes the duration of the phone's
(Samsung A22 5G 2022) resources, CPU time and data log used while making the connection. No
noticeable difference for the user while using the mobile application if a connection is resumed, 5G
versus 4G connection.

Reopen connection test
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The application build for the truck driver uses video feed from other devices. To test this scenario, we
used 2 different tools and methodologies. Since the framework the application was built upon (Google
Flutter, LiveKit GRPC library) doesn't offer data transfer logging we tested following two tools. VLC video
player was used and large video files of 10-minute videos where loaded on the same machine (laptop
with 5G Modem RM500Q-AE on the UTP port). During test the 4G network managed to stream 4 videos
at high bit rate but the forth video didn't load at high enough speed, reaching only 200kbps.The same
test was performed at a 5G network, 4 videos with no drop-in bit rate. The bit rate includes the actual
rendered video and the buffered video. This test is an indication of the 5G capabilities of download
video. More detailed results are presented at the other UCs of LL Athens.

Screen shots of the application below. To test and gather data, a browser JavaScript was used to load
videos and record the bytes loaded per seconds. This gave a bit rate with the same results as the above
test. This usage of the application is the one requiring 5G, to cater multiple drivers with multiple feeds
and improve the quality of the user experience with multiple streams at a higher resolution.



5G

~ Audio
Decoded
Played
Lest

v Video
Decoded
Displayed
Lost

¥ Input/Read
Media data size

~ Input bitrate

Overall

Demuxed data size
Content bitrate
Discarded (corrupted)
Dropped (discontinued)

Displayed
Lost
~ Input/Read
WMedia datz size
~ Input bitrate

Overall

Demuxed dats size
Content bitrate
Discarded (corrupted)
Dropped (discontinued)

Decoded
Displayed
Lost
 Input/Read
Media data size
~ Input bitrate

Overall

7739 blocks
3722 buffers
1 buffers

7992 blocks
5991 frames
15 frames

60689 KiB
3710 kb/s

36134 KiB
4149 /s
0
8

4063 blocks
1997 buffers
24 buffers

4233 blocks
3248 frames
7 frames

19284 Kig
3751 kb/s

17304 KiB
16 kb/s
]
2

21407 blocks
10481 buffers
0 buffers

11194 blocks
7383 frames
4 frames.

93558 Kie
6970 kb/s

| VNS Y]

Demuxed data size
Content bitrate
Discarded (cormupted)
Dropped (discontinued)

~ Input/Read
Media data size
~ Input bitrate

Overall

81142 KiB
3094 kb/s
0
8

21407 blocks
10481 buffers
0 buffers

11194 blocks
7383 frames

4 frames

93558 KiB
6970 kb/s

| VRS — Y]

Demuxed data size
Content bitrate
Discarded (corrupted)
Dropped (discontinued)

81142 Kig
3094 kb/s
[

8

Displayed
Lost
~ Input/Read
Media data size
¥ Input bitrate

Overall

Demuxed data size
Content bitrate
Discarded (corrupted)

Dropped (discontinued)

~ Audio

Displayed
Lost
~ Input/Read
Media datz size
~ Input bitrate

Overall

Demuxed data size
Content bitrate
Discarded (corrupted)
Dropped (discontinued)

¥ Input/Read
Media data size
¥ Input bitrate

Overall

Demuxed data size
Content bitrate
Discarded (cormupted)
Dropped (discontinued)

~ Input/Read
Media data size
~ Input bitrate

Overall

Demuxed data size
Content bitrate
Discarded (corrupted)
Dropped (discontinued)

16265 blocks
2006 buffers
0 buffers

8537 blocks
3725 frames
3 frames

81072 KiB
2686 kb/s

64295 KiB
2024 kb/s
]

4

1 blocks
0 buffers
0 buffers

9 blocks
0 frames
0 frames

439 KiB
197 kb/s
0
2

5301 blocks
2649 puffers
1 buffers

5583 blocks
2345 frames

3 frames

35490 KiB

2895 kb/s

22775 KiB
2602 kb/s
0
2

25767 blocks
12661 buffers
0 buffers

13520 blocks
8546 frames

4 frames

122484 KiB
7933 kb/s

92708 KiB
3525 kb/s
[

8




5000 5G Video Viewing

2500

2000

1500

1000

500
1000

The use of the 10T Fleet Platform is targeted also as mentioned to use the information from connected
external trucks that operate outside and inside the port to improve the operations within the port (A-KP14
and A-KPI5). The key points that reduce the port operations performance are the wait times at customs
(just outside the port) and inside the port at the loading / unloading next to the containers stack. Here
we focus on the latter.

In more detail, external trucks arrive to the port stack area to be loaded with a container. In each stack
area the same port asset (i.e., a straddle carrier) is performing loading/unloading operations to trucks
sequentially. Hence, when trucks arrive with no coordination to the stack area, there is a growing queue
of vehicles waiting to be loaded, which increases the wait time of trucks and traffic congestion within the
port, hence, the mean time of container job (A-KPI15) completion for external trucks. Via the VFI platform
the loading / unloading (of containers) can be improved by coordinating the external truck depot
locations (Figure 62) to schedule their trucks to arrive at pre-defined time slots. Based on PCT’s logs,
the average time of the external truck job completion time is about 40 minutes. To expedite this time,
the VFI platform exploits the external truck location and estimated time of arrival on the port customs,
and communicates pertinent information with the aforementioned truck depots so as to delay/reschedule
their departure from the depots according to the delays experienced within the Port (aggregated at the
VFI platform). In detalil, this is achieved by the following actions.

Trucks from nearby depots (Figure 62) are connected to the VFI platform, continuously

consuming information from the VFI assoicated trucks inside the port

VFI associated external trucks calculate their average wait time at the port stack areas

Based on the above, trucks at depots, reschedule their departure time accordingly ; However,

in stack areas, other external trucks (not part of the VFI fleet) can contribute to the delays. In
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this case information from multiple VFI trucks is taken into account (if available) to provide an
estimate of the expected wait time.

For the duration of the trials 21 vehicles were enrolled in the VFI platform and 24 routes where identified.
The routes are depicted on the following map.

The following map snapshots indicate cases for trucks operating inside the port with higher wait times
(left), and lower wait times (right).

While a reduction of congestion and waiting times at the port can be expected (A-KPI5), the results
could be further improved by accounting the following. Data from trucks on the Fleet Management
Platform do not represent the majority of trucks operating within the port; only a small fraction of the
trucks operating send data to the platform. To streamline and make more efficient the port operations
all trucks operating must be centrally orchestrated. This is challenging, as external fleet operators utilize
fleet management platforms from various vendors (with different operational requirements, security
protocaols, etc.), or in some cases trucks are not even connected.

The following table illustrates the average wait times of truck per day that operated inside the port. A
large number of trucks operating inside the port belong to logistics companies that are not Vodafone
Innovus customers and the following table indicates a small fraction of the actual wait times per truck.
Due to the small sample size the idling times may vary significantly. The consumption (A-KPI8) in It/h is
measured by trucks with CAN BUS sensors; not all trucks have these sensors so the estimation for all
trucks is estimated (for Euro 5 Diesel trucks) at 3lt/hour.



Truck01 25 1,25
Truck02 65 3,25
Truck03 55 2,75
Truck0o4 35 1,75
Truck05 45 2,25
Truck06 37 1,85
Truck0?7 61 3,05
Truck08 66 3,3
Truck09 45 2,25
Truck10 35 1,75
Truckll 33 1,65
Truck12 33 1,65
Truck13 52 2,6
Truck14 31 1,55
Truck15 27 1,35
Truck16 15 0,75
Truckl7 28 1,4
Truck18 34 1,7
Truck19 39 1,95
Truck20 22 1,1
Truck21 19 0,95

For testing some trucks were asked to delay (via a message to the mobile application) the arrival inside
the port area (from customer close to the port in areas around 15-20 Km close to port). The following
table represents trucks with 15-minute delay of arrival.

Trucko1 23 1,15 1,25 -10
Truck03 49 2,45 2,75 -30
Truck04 36 1,8 1,75 5
Truck06 42 2,1 1,85 25
Truck07 57 2,85 3,05 -20
Truck10 27 1,35 1,75 -40
Truck11 27 1,35 1,65 -30
Truck13 47 2,35 2,6 -25
Truck16 24 1,2 0,75 45

Truck19 33 1,65 1,95 -30
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3.1 LL Hamburg Use Cases

Hamburg Living Lab is located on the test field for “connected and automated driving” (TAVF) in the City
of Hamburg. The living lab uses the public 5G network operated by the Deutsche Telekom.

With the living lab, the potential of leveraging positive environmental impact by using 5G in data
exchange for traffic management outside the port and the hinterland is demonstrated. The living lab
deployed a methodology to capture the effect of the traffic infrastructure on regional emissions, making
them comparable (standardised) by quantifying such influences under defined status of congestion and
other relevant factors (driver profile, vehicle profile, loading, etc.).

For Hamburg LL, the following Use Cases are deployed:
Use Case 8/9: Floating Truck & Emission data (FTED) by 5G IoT devices.

Use cases 8 and 9 are aimed at collecting Floating Truck & Emission data (FTED) by 5G IoT devices,
on-board units and nomadic devices. Analysing FTED data according to the 1ISO-23795 standard [2]
leads to microscopic emission models per vehicle for the air pollutants CO2, NOx, PM and noise, all
directly linked to acceleration and energy performance index (API, EPI). But applying the ISO-23795
standard for carbon footprint monitoring, requires stable data transmission and precise positioning, even
more when using 1SO-23795 for NOx, PM and noise where Newtonian Physics turned out to be non-
linear relative to fuel consumption detection per floating car.

Use Case 10: Green Light Optimal Speed Advisory (GLOSA)

Green Light Optimal Speed Advisory (GLOSA) helps drivers to avoid harsh braking, which is one of the
main causes for increased fuel consumption and CO2 emissions. In 5G-LOGINNOQV, it is planned to
use GLOSA for truck platoons and to showcase a mid-term migration path for using GLOSA in
Automated Truck Platoons based on 5G technology. From 5G projects and publication [3], it is well-
known that Vehicle-to-Infrastructure (cellular V2X) for vehicle platooning has End-to-End (E2E) latency
requirements of 20ms time frames and up to 350m minimum ranges, prerequisites, which can only be
achieved with the URLLC functionalities of the 5G network. Performance requirements for advanced
driving including collision avoidance (10ms E2E latency) and cooperative lane change (25ms E2E
latency) have the same low latency communication characteristics and cannot implemented without 5G
mobile networks. In 5G-LOGINNOV, GLOSA based Truck Platoons will demonstrate a migration path
towards higher SAE levels of Automation starting with basic functionalities including 5G test cases and
test runs foreseen in use case 10, GLOSA based Automated Truck Platoons.

Use Case 11: Sustainable traffic management.

Sustainable traffic management uses different type of on- and above ground sensors to detect traffic
density and traffic volume. With well-defined thresholds describing the Level-of-Services
“free/dense/congested”, traffic management actions are set by public authorities to reduce congestion
and negative environmental impact. Floating vehicle data is one of these sensors complementing as
flow sensor the traditional on-street equipment. In 5G-Loginnov, the floating vehicle sensor network use
5G Services to design a special scenario solution implemented by Swarco and their myCity product in
the Go-to-Market phase for improving cities’ environmental footprint.

All use cases include Real-Time Tracking & Enhanced Visibility features for traffic managers by
monitoring FTED speed profiles and congested road segments, services which once again require
stable data transmission and precise positioning (5G prerequisite).
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All Hamburg KPIs defined for evaluation, are horizontal elements of use case 8/9, 10 and 11. As an
example, we will use the measurement of standstill, which is an important KPI of all three use cases.
The KPI is measured by 1SO-23795-1 compatible smartphone LCMM APP, by tec4u telematic device
as well as by Continental 10T Box in use case 8/9. But standstill is at the same time heavily influenced
by Time-to-green traffic light assistance APP GLOSA making it also to an important element of use case
11 (environment based smart city traffic management). As all KPIs are 5G enabled, the 5G NSA KPIs
also are horizontally cov are 5G enabled, the 5G NSA KPIs also are horizontally cov are 5G enabled,
the 5G NSA KPIs also are horizontally covering all use cases. Given this horizontal set-up, the Hamburg
team executed trials and evaluation according to KPIs, which are 5G enabled, the 5G NSA KPIs also
are horizontally covering all use cases. Given this horizontal set-up, the Hamburg team executed trials
and evaluation according to KPIs, which are 5G enabled, the 5G NSA KPlIs also are horizontally covering
all use cases. Given this horizontal set-up, the Hamburg team executed trials and evaluation according
to KPIs, which are 5G enabled, the 5G NSA KPIs also are horizontally covering all use cases. Given
this horizontal set-up, the Hamburg team executed trials and evaluation according to KPIs, which are
5G enabled, the 5G NSA KPIs also are horizontally covering all use cases. Given this horizontal set-up,
the Hamburg team executed trials and evaluation according to KPIs, which are 5G enabled, the 5G NSA
KPIs also are horizontally covering all use cases. Given this horizontal set-up, the Hamburg team
executed trials and evaluation according to KPIs, which are all 5G enabled. This includes the 5G NSA
KPIs which are also covering horizontally all use cases. It must be mentioned that the KPI based trial
set-up is different to Koper and Athens given the use case design behind.

3.1.1 Technical setup

The LL Hamburg illustrated new functionalities of 5G as MEC, precise positioning as uRLLC can improve
the efficiency of logistic operations, but on the other hand, also prove that improved 5G network
functionalities as mMTC and eMBB are essential for any future mobile network application.

In this context, the LL Hamburg used MEC, 5G enabled precise positioning, uRLLC, mMTC and eMBB
in its use cases according to their functional abilities.

MEC and uRLLC

UC 10 will establish a V2X information system by combining 5G functionalities with GLOSA to enable
automated truck platooning. The optimised trajectory planning for automated vehicle manoeuvring
across intersections enabled by real-time information on current and predicted traffic light signalling will
require reliable connectivity and analytic capability with a low latency below 10ms. By using a MEC
between the 5G core network and the connected vehicles with reducing network transfer delays to meet
the specific ultra-reliable and low-latency requirements necessary to serve automated truck platoons.

The MEC will bring the analytics of the LL-Hamburg uses cases much closer to the connected vehicles
by processing and combining mission-critical traffic information with manoeuvres of the vehicles and
infrastructure data from the cloud. Efficient and safe driving inside a platoon requires information being
shared among the platoon as synchronous as possible. The following vehicles should be on-time aware
of relevant actions of the leading vehicle (imminent reduction/increasement of speed), otherwise
unnecessary braking or the dissolvement of the platoon cannot be prevented.

The uRLLC functionality is furthermore a prerequisite for the required precise positioning used in all four
use cases of the LL Hamburg. While precise positioning of stationary objects does not require the use
of 5G technologies, the application on fast-moving vehicles as passenger cars, light, and heavy
commercial vehicles requires the improved connectivity capabilities of 5G as uRLLC. Under
consideration of the movement of the platoon, the impact of uRLLC will further be improved by 3GPP
Release 16, which introduces enhancements of session continuity and therefore reduces the influence
a handover has on the reliability of low latency services.
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Precise Positioning
The LL Hamburg used 5G enabled precise positioning on lane-level for all use cases.

This requires an accuracy of the position within an error bound of lateral of 0,57m (0,10m for 95%) and
longitudinal of 1,40m (0.48m for 95%) on freeways [23]. Therefore, conventual GNSS position
information will not be sufficient. Secondly, the given position must be provided in a high frequency and
a low latency to be reliable in a fast-moving vehicle.

The four use cases will combine uRLLC with the precise positioning service Skylark that provides
accuracy for the position of up to 0.10m. Figure 73 shows the Skylark service co-branded by Deutsche
Telekom, a partnership that was already announced in March 2020 [8] with further product details
published in [7]. It should be noted that network centric Precise Positioning Services do not necessarily
require 5G and are already available in 4G/LTE. Nevertheless, when it comes to rolling out any type of
scalable service uptake, e.g., reliable Floating Truck Emission Data use cases (UC8/9) or Collision
Warning for Automated Truck Platoons in a European Metropolitan Region such as Hamburg, the core
functions of the 5G network uRLLC, MEC and network slicing become crucial elements of the services
planned to be implemented in Hamburg.

SKYLARK"

5G Security Requirements

Rising security concerns regarding the transfer of sensitive video surveillance data to the cloud, MEC is
enabling the processing of video data within the edge of Al-enabled 5G CCTV networks. Instead of
sending all video surveillance data to the cloud, MEC reduces security risks by processing the data
locally and transferring filtered data to the cloud.

Logistic use cases in the Hamburg LL result in deep security, safety, and data protection challenges,
and require a holistic approach to security. Due to its growing ecosystem complexity, logistic
applications raise deep security, safety, and data protection concerns. Strong protection is therefore
mandatory. To provide direction in approaching cybersecurity, several standards, regulations, and
directives in various stages of maturity are proposed for providing security assurance and guidance.

Protection mechanisms are needed in: truck/car, network, and back-end tiers; all software and hardware
levels; and for the full data life-cycle. Some of the main security and privacy points of vigilance are the
following:

1. User (people, cars, infrastructure) in the ecosystem have become targets of choice for hackers: the
number of attacks recently discovered and published is continuously growing.
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2. Safety and security can no longer be handled separately: failures and threats blend into interaction
vulnerabilities as trucks are cyber-physical systems.

3. The connected logistic ecosystem is data-shaped: different data are collected, analysed, and shared
with all ecosystem stakeholders through multiple paths, and must be protected. A key trade-off for
protecting data at rest, and in transit, is finding the right balance between data integrity, critical for the
safety of vehicles and their surroundings, and data privacy, to minimize the amount of collected data.

Key questions for protection include for each stakeholder the choice of the most relevant tier to deploy
security mechanisms. Should an end-to-end approach to security be adopted, using cross-cutting
security management planes, or should tier-by-tier solutions be favoured. The main security
requirements can be summarized in the following items:

Cultivating a cybersecurity culture.

Adopting a cybersecurity life cycle for complete development over the life cycle.
Assessing security functions through testing phases: self-auditing & testing.
Managing a security update policy.

Providing incident response and recovery.

Taken together these general guidelines should ensure a secure delivery of services in the ecosystem.
5G Architecture and technologies

The LL Hamburg set-up is mainly based on the idea to use telco products (DTAG) as the basis for the
use case demonstration. Standard 5G in combination with MEC (MobilEdgeX as product) is the network
backbone for the lab. DTAG connections are also used to link mobile devices (e.g. trucks), RSU’s (e.g.
traffic lights), and the related backbone infrastructure (e.g. TMS Traffic Management System from
SWARCO). Dedicated functions, especially with requirements for low network delay, will be deployed in
a so-called MEC environment. MEC deployment is based on standard procedures like Docker.

Figure 74 demonstrates this relation between the components in the LL Hamburg.
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3.1.2 5G Network Architecture

The 5G mobile network is a big step to provide many new features for Telco customers. The following
pictures illustrated the main components for a 5G network.
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From a core network evolution perspective, there are two main steps to supporting 5G New Radio (NR).
The first step — a 5G Evolved Packet Core (EPC) with 5G NR Non-Standalone (NSA) operation — is to
move forward from the existing EPC. This is the current situation for LL Hamburg (5G production network
Deutsche Telekom AG - 3GPP R15).

There are three major advantages for 5G:

e Massive machine to machine communications — also called the Internet of Things (loT) that
involves connecting billions of devices without human intervention at a scale not seen before.

e Ultra-reliable low latency communications — mission-critical including real-time control of
devices, industrial robotics, vehicle to vehicle communications and safety systems,
autonomous driving, and safer transport networks.

e Enhanced mobile broadband — providing significantly faster data speeds and greater
bandwidth. New applications will include fixed wireless internet access for homes, outdoor
broadcast applications without the need for broadcast vans, and greater connectivity on the
move.

In the 5G NSA approach, the existing 4G core (EPC) is working as an anchor network mainly for
signalling purposes. This EPC is combined with new extended radio functions — focused on the
provisioning of additional mobile bandwidth capabilities (5G New Radio — 5GNR). T-Mobile / Deutsche
Telekom is using additional frequencies from old UMTS solutions (2,1 GHz band) to offer more capacity
for the clients. This function (dynamic frequency usage) is adapted from 3GPP R16.



H Backend

|
i1 Packet Data Network (PDN) 1 |
11 Domain (Public Internet) ‘

058 WO ‘
Vi/SON G

Radio Access Network (RAN) : __Evolved Packet Core (EPS); Short: Core (Network)

1 mm 55 PCR et " . aaf
MME H PORF  fr + LN

B | 3 A\
] H As

- (Public
Internet)

o ml ved Node B (eNB) /

H P :
\i |
: -
' V LTEBBU
' ]
{

.
aH
LTE RRU H V[

Nexl aenemlon
Node B
(gNB)

Table 29 provides a summary of the 5G technologies to be deployed in the Hamburg Living lab.

Radio Access Network Production network 3,6 Ghz / 2.1 Ghz

Number of cell sites 3,6 GHz more than 20 sites / 2.1 GHz over 98% full coverage in
Hamburg

Frequencies used 3.6 GHz /2.1 GHz

Frequency Bandwidth 2,1 GHz — 20 MHz / 3,6 GHz 90 MHz

Mobile Core 3GPP R15 with DSS

Virtualised infrastructure only partly

Orchestrator DTAG internal

Network Slicing not deployed yet

MEC available (MobileEdgeX)

3.1.3 Technologies and innovations deployed

Figure 77 gives an overview of the logistics terminal operation inside the Port of Hamburg. As one can
see, the river Elbe divides the city of Hamburg into two parts, i.e a northern and southern section relative
to the river. It can be seen that most of the terminals for container handling are in the southern part of
the city. For these terminals, the multimodal accessibility for container delivery to the road (motorway)
and rail (cargo hubs) are crucial for the overall ports’ operation efficiency. This is of special importance
as 10,000 TEU container ships nowadays are complemented by “XXL-size” cargo ships transporting up
to 24,000 containers. These “Mega’-Container ships must be navigated safe and fast along the Elbe
river to Hamburg’'s main terminals, located in the southern part of the city. The challenge for such a
sensitive ecosystem is to ensure an efficient organization along the entire multi-modal transport chain
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including the specifics of water, road, and rail cargo altogether. Therefore, the City of Hamburg published
the first I.T.S. policy directive for the promotion of logistics and I.T.S. innovation projects in April 2016
and extended it in June 2018 [19], with a focus on political support measures linked to the I.T.S. world
congress organised in October 2021 in Hamburg.

The strategic balance of conflicting requirements linked to port logistics and low emission zones in the
city centre, the professional handling of goods’ transport along the multi-modal supply chain as well the
efficient hand over from Mega-Containerships to last mile hub- and micro-hub warehouses became one
of important KPIs of the I.T.S. policy directive.

Teststrecke fiir Automatisiertes
und Vernetztes Fahren
in Hamburg (TAVF)

— mastzung bis 2021
ﬂ Ausgestanete Amosin Jul 2020
) Prognosetnktonaitat

In 5G-Loginnov, the contribution to the overall political challenge is planned to be implemented in the 2

rectangular boxes one can see in Figure 78. The red coloured rectangular box in the upper part of
Figure 28 shows the location of the Test field for Autonomous and Connected Driving (TAVF) and is
located directly in the “heart” of the city. The Road network and infrastructure of TAVF belong to the
traffic authority of the city and all traffic light intersections of the test field are equipped:

o with “classical” V2X technology using 802.11p WLAN communication standard and
o with “cellular” V2X technology using 5G Release 16 mobile communication of the Deutsche
Telekom AG providing 5G services to the public.

With regards to 5G infrastructure aspects in TAVF, Use Case 10 is the most relevant making use of the
5G features low latency communication (URLLC) and 4K Video broadband communication (eMBB). To
navigate a platoon stable and safe within the busy urban road network of Hamburg, avoiding collision
with Vulnerable Road Users (VRUSs) such as pedestrians and bicycles a special APP will be used known
as GLOSA (Green Light Optimal Speed Advisory). As shown in Figure 78, the innovation lies in the
uplink of traffic light Signal Phase and Time information combined with the specific Topology Information
of the Intersection leading to a SPAT/MAP message which is transmitted to the 5G-Mobile Edge Server
of Deutsche Telekom and from there to the GLOSA APP. Additionally, 5G enabled Precise Positioning
will be used to enhance the accuracy of the GLOSA-APP and to improve the collision warning alert
message. It should be mentioned that for 5G enabled GLOSA truck platoons, Vehicle-to-Vehicle
messages with latency requirements of less than 25 Milli-Seconds are needed as stated by
Chandramouli and Liebhart [2].
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The innovative approach planned in Hamburg is to measure the environmental impact of traffic
management actions linked to traffic light signalling used in 5G enhanced GLOSA (red coloured box in
Figure 78) as well GHG savings possible when extending Green Light for truck platoons based on I.T.S.
G5 and 5G enhanced Floating Truck Emission Data analysis offered by T-Systems smartphones,
Continental loT devices and tec4u Entruck on-board-units. Additionally, Continental and tec4U will
implement 5G technologies in their devices and existing applications to be able to enable a native use
of 5G technologies. The significant savings expected will also be used for business deployment as fuel
savings give stimulus for logistics service providers to join the project and the overall I.T.S. strategy of
the city of Hamburg as well as the port of the future implementation plans announced by the Hamburg
Port Authority (HPA).

3.2 LL Hamburg KPlIs

KPIs selected by Hamburg LL are not referred to each UC but they all measure aspects of the three
demonstrated UCs. All KPIs are defined in relation to the 5G technical setup and the use cases
described in the chapters before.

KPIID H-KPI1

Measurable objectives and Increase average truck speed in single vehicle mode with

indicators equipped vehicles (vehicles for LL Hamburg will be equipped
with devices for Entruck, Conti loT and LCMM)

KPI Increase average truck speed in single mode up to 5%

KPIID H-KPI2

Measurable objectives and Reduction of acceleration in single mode (vehicles for LL

indicators Hamburg will be equipped with devices for Entruck, Conti loT
and LCMM)

KPI Reduction of average acceleration activities in single mode
up to 5%

KPIID H-KPI3

Measurable objectives and Reduction of stillstand time in single mode (vehicles for LL

indicators Hamburg will be equipped with devices for Entruck, Conti loT
and LCMM)

KPI Reduction of stillstand time in single mode up to 5%
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KPI ID
Measurable objectives and
indicators

KPI

KPIID
Measurable objectives and
indicators

KPI

KPI ID
Measurable objectives and
indicators

KPI

KPI ID
Measurable objectives and
indicators

KPI

KPI ID
Measurable objectives and
indicators

KPI

KPI ID
Measurable objectives and
indicators

KPI

KPI ID
Measurable objectives and
indicators

KPI

KPI ID
Measurable objectives and
indicators

KPI

H-KPI4

Increase average truck speed in platoon vehicle mode with
equipped vehicles (vehicles for LL Hamburg will be
equipped with devices for Entruck, Conti IoT and LCMM)
Increase average truck speed in platoon mode > 5%

H-KPI5

Reduction of acceleration in platoon mode (vehicles for LL
Hamburg will be equipped with devices for Entruck, Conti
loT and LCMM)

Reduction of average acceleration activities in platoon
mode > 5%

H-KPI6

Reduction of stillstand time in platoon mode (vehicles for LL
Hamburg will be equipped with devices for Entruck, Conti
loT and LCMM)

Reduction of stillstand time in platoon mode > 5%

H-KPI7

Reduction of fuel consumption in single mode (vehicles for
LL Hamburg will be equipped with devices for Entruck,
Conti IoT and LCMM)

Reduction of fuel consumption in single mode up to 10%

H-KPI8

Reduction of CO2 emissions in single mode (vehicles for LL
Hamburg will be equipped with devices for Entruck, Conti
loT and LCMM)

Reduction of CO2 emission in single mode up to 10%

H-KPI9

Reduction of fuel consumption in platoon mode (vehicles for
LL Hamburg will be equipped with devices for Entruck,
Conti loT and LCMM)

Reduction of fuel consumption in single mode up to 20%

H-KPI10

Reduction of CO2 emissions in platoon mode (vehicles for
LL Hamburg will be equipped with devices for Entruck,
Conti loT and LCMM)

Reduction of CO2 emission in platoon mode up to 20%

H-KPI11

Optimize Energy Performance Index ‘EPI - cl per ton and
km’ (vehicles for LL Hamburg will be equipped with
devices for LCMM)

Increase value of ‘EPI - cl per ton and km’ up to 10% for
vehicle trips
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KPI ID H-KPI112

Measurable objectives and Optimize Acceleration Performance Index ‘API - KWh per

indicators ton and km’ (vehicles for LL Hamburg will be equipped with
devices for LCMM)

KPI Increase value of APl ‘KWh per ton and km’ up to 10% for
vehicle trips

KPI ID H-KPI13

Measurable objectives and 5G bandwidth on urban roads

indicators

KPI Extended cellular bandwidth on urban roads by 5G network

KPI ID H-KPI114

Measurable objectives and Positioning quality on urban road networks with 5G

indicators

KPI Positioning quality on urban road networks with 5G by 10
cm

KPI ID H-KPI15

Measurable objectives and Signal latency in the 5G environment using Mobile Edge

indicators Computing

KPI Average signal latency in the 5G environment will be
reduced thru Mobile Edge Computing (MEC) to 10 ms
during vehicle trips

ID H-KPI116

Measurable objectives and Packed Error Rate (PER) in 5G NSA production network

indicators

KPI Average rate of packed errors during 5G data transmission

from vehicle to backend. The KPI will be measured while
performing the different use cases. Reduction of PER by
10%.

3.3 Technical baseline test setup in 2021

All Hamburg KPIs listed in chapter 3.2, cover several of the use cases deployed in Hamburg. Therefore,
the technical set-up in the initial phase 2021 had a focus on collecting data in both single and platoon
mode with trips from different road segments relevant for Hamburg’s Port operation. This horizontal
approach overarching all use cases by collecting trips in road networks of relevance is shown in Figure
78. By equipping rental cars and selected fleets of SME winners Taxi-AD and eShuttle baseline trips
were registered IT-Backends of T-Systems (LCMM Smartphones), tec4u (entruck) and Continental (IoT-
Backend). Figure 79 depicts a typical in-vehicle set-up and the starting point of the trips in the city centre
of Hamburg close to the test track TAVF.
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5G LOGINNOV: H-KPIs with Horizontal Technical Setup
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The baseline detection covered three periods of dedicated trip records using LCMM, entruck and
Continental 10T-Box. In March 2021, a total number of 52 trips was recorded followed by 43 trips
recorded June same year. For the baseline determination, the energy equation of 1ISO-23795-1 was
used and Skylark DTAG Precise Positioning Service applied for improved position input in the baseline
evaluation. For the purpose of comparison, eShuttle and Taxi-Ad trips were recorded with LCMM and
entruck on-board enabling additional data collection on road segments of the operational importance in
Hamburg. It has to be mentioned that 2021 was impacted heavily by Covid, including reduced road
traffic. Nevertheless, port operation and logistics showed the same rush-hour phenomena known
without Covid, therefore we decided to use 2021 trips recorded as baseline for KPI detection.

3.4 Use Case trials in 2022

Compared to 2021, year 2022 was still characterized by Covid and periods of release. The following
information for each storyboard summarizes the organizational and technical setup, on operated number
of trips in the TAVF area and provides additional data and screenshots. All storyboards have been
specified in D3.1 and the storyboards have been successfully performed during the Trials#1 -#3 in
Hamburg in 2022.

In general, we have differentiated during the trials between single mode and platoon mode setups. The
following overview is focusing on this. Chapter 3.4.1 to chapter 3.4.6 give details about the 2022 trials
comparing applied use case technologies relative to 2021 baseline. For trial #1 phase, a total number
of 50 trips was recorded followed by trial #2 week counting 40 trips whereas in trial #3 week 85 trips
were counted. For KPI evaluation, the storyboards defining the trial scenarios distinguished single and
platoon mode to find impact of GLOSA and Time-to-Green information available inside the vehicle for
driver assistance.

3.4.1 Trial #1 Single Mode

Date: 13.09.-15.09.2022 Trial #1
Processed and by: T-Systems

Trial #1 Setup:

# vehicles in the trial: 3

Vehicle #1 with Entruck, Conti IoT Box, LCMM+Glosa
Vehicle #2 with LCMM+Glosa

Vehicle #3 with LCMM+Glosa, Qualipoc and LCMM@ Skylark
# overall trips single mode: 8

# trips tec4u: 8
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# trips Conti loT Box: 8

# trips with EnTruck, Conti lot Box, LCMM+Glosa: 8

# trips with LCMM@ Skylark: 8

#trips Qualipoc (5G and 4G cellular network measurement): 8

3.4.2 Trial #1 Platoon Mode

Date: 13.09.-15.09.2022 Trial #1
Processed and by:T-Systems
Trial #1 Setup:

# vehicles in the trial: 3

Vehicle #1 with Entruck, Conti loT Box, LCMM+GLOSA

Vehicle #2 with LCMM+GLOSA

Vehicle #3 with LCMM+GLOSA, Qualipoc and LCMM@Skylark (Others)

# trips with EnTruck, Conti lot Box, LCMM, GLOSA

# overall trips platoon mode: 11

# trips tec4u: 11

# trips Conti loT Box: 11

# trips with EnTruck, Conti lot Box, LCMM: 11

# trips with LCMM@SKkylark: 11

#trips Qualipoc (5G and 4G cellular network measurement): 11

3.4.3 Trial #2 Single Mode

Date:04.10.-06.10.2022 Trial #2
Processed and by:T-Systems
Trial #2 Setup:

# vehicles in the trial: 3

Vehicle #1 with Entruck, Conti loT Box, LCMM+Glosa

Vehicle #2 with LCMM+Glosa

Vehicle #3 with LCMM+Glosa, Qualipoc and LCMM@Skylark (others)

# overall trips single mode: 19

# trips tec4u: 6

# trips Conti loT Box: 6

# trips with EnTruck, Conti lot Box, LCMM+Glosa: 6

# trips with LCMM@Skylark: 4

#trips Qualipoc (5G and 4G cellular network measurement): 8
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3.4.4 Trial #2 Platoon Mode

Date: 04.10.-06.10.2022 Trial #2
Processed and by: T-Systems
Trial #2 Setup:

# vehicles in the trial: 3

Vehicle #1 with Entruck, Conti loT Box, LCMM, GLOSA (HH...)

Vehicle #2 with LCMM, GLOSA (PS Logi ...)

Vehicle #3 with LCMM, GLOSA, Qualipoc and LCMM@Skylark (Others)

# trips with EnTruck, Conti lot Box, LCMM, GLOSA

# overall trips platoon mode: 26

# trips tec4u: 8

# trips Conti loT Box: 8

# trips with EnTruck, Conti lot Box, LCMM: 8

# trips with LCMM@Skylark: 10

#trips Qualipoc (5G and 4G cellular network measurement): 11

3.4.5 Trial #3 Single Mode

Date: 22.11.-25.11.2022 Trial #3
Processed and by: T-Systems
Trial #3 Setup:

# vehicles in the trial: 3

Vehicle #1 with Entruck, Conti loT Box, LCMM +Glosa

Vehicle #2 with LCMM+Glosa

Vehicle #3 with LCMM+Glosa, Qualipoc and LCMM@Skylark (others)

# overall trips single mode: 42

# trips tec4u: 11

# trips Conti loT Box: 11

# trips with EnTruck, Conti lot Box, LCMM+Glosa: 11

# trips with LCMM@Skylark: 10

#trips Qualipoc (5G and 4G cellular network measurement): 8

3.4.6 Trial #3 Platoon Mode

Date: 22.11.-25.11.2022 Trial #3
Processed and by: T-Systems
Trial #3 Setup:

# vehicles in the trial: 3
Vehicle #1 with Entruck, Conti loT Box, LCMM, GLOSA (HH...)
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Vehicle #2 with LCMM, GLOSA
Vehicle #3 with LCMM, GLOSA, Qualipoc and LCMM@Skylark (Others)

# trips with EnTruck, Conti lot Box, LCMM, GLOSA

# overall trips platoon mode: 46

# trips tec4u: 12

# trips Conti loT Box: 12

# trips with EnTruck, Conti lot Box, LCMM: 12

# trips with LCMM@SKkylark: 9

#trips Qualipoc (5G and 4G cellular network measurement): 11

3.5 Results & KPI evaluation

For the sake of KPI evaluation, baseline determination in 2021 had a pool of 95 recorded trips compared
to 175 trips recorded and available for evaluation from year 2022. All Hamburg KPIs were defined as
environmental and social benefits, highlighting quantities with regards to vehicles in motion and traffic
flow characteristics such as average speed, acceleration (braking) and standstill in single and platoon
mode. After data analysis and elimination of erroneous trip data due to GNSS failure or other obvious
data mismatch, the traffic related Hamburg KPIs gave the following final result.

Compared to 2021 recorded baseline, Table 30 shows that KPI expectations were not only achieved
but impressively exceeded. Average speed was 24% better in single and even 32% better in platoon
mode, standstill reduced 58% in single and 54% in platoon mode. The KPI threshold of reducing
standstill by 5% and increasing speed by 5% was much lower than the successful usage of Time-to-
Green and Traffic Light Assistance APP recommendations implemented by the Hamburg project team
T-Systems, Swarco, tec4u and Continental. It has to be mentioned that traffic flow is difficult to reproduce
in the sense of reliable statistics. Nevertheless, given the fact that data and trip collection took place in
different time periods but similar times of the day, baseline in 2021 and trials in 2022 reflect Hamburg’s
road and traffic condition quite well.

With regards to acceleration, two different measurement values were recorded and used. One reflects
braking or negative acceleration behaviour per trip normalized by seconds with speed above zero
multiplied by 10 for better readability. This improved in single mode, but not >5% in platoon mode. One
of the reasons might be that human, non-automated vehicle platooning forces drivers to follow, thus, to
accelerate more than in single mode. Again, our data evaluation proved that normalization of energy
and acceleration is useful as different vehicles with different weights lead to different savings. Overall,
results for EPI and API confirm the outstanding >30% improvement relative to baseline determination.
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H-KPI Mode Unit Trial #1|Trial #2 | Trial #3 el _Baselme Notes KPI/[36]
Trial #0
Speed (H-KPIL,4)
513 single mode mit Glosa m/s 5,31 5,32 433 No Glosa 24%
547 platoon mode mit Glosa m/s 5,63 5,33 549 4,14 32%
Acceleration (H-KPI2,5)
(10xm/s2)
-141 single mode mit Glosa [sec(v=0) | -1,29 -1,51 -1,43 Ohne Glosa 13%
-1,55 platoon mode mit Glosa m/s2 -1,37 | -1,59 | -1,69 -1,62 4%
standstill (H-KPI3,6)
370 single mode mit Glosa sec 3139 358 410 No Glosa 58%
341 platoon mode mit Glosa sec 362 361 321 633 54%
Fuel Consumption (H-KP17,9)
513 single mode mit Glosa |ltr./100km| 5,31 5,32 4,93 No Glosa 34%
6,06 platoon mode mit Glosa |ltr./100km| 6,21 5,70 6,20 7,80 22%
CO2 Consumption (H-
KPI8,10)
0,92 single mode mit Glosa | kg/100km | 0,92 0,86 0,95 No Glosa 36%
0,95 platoon mode mit Glosa | kg/100km | 1,07 0,88 0,95 143 33%
Energy performance index
value EPI (H-KPI11)
Itr /ton/10
4,39 Alle Trips okm 4,20 4,31 4,54 5,35 No Glosa 18%
Acceleration performance
index value API (H-KPI112)
mj/ton/10
6,72 Alle Trips okm 583 7,01 7,33 7,12 No Glosa 6%

The project team defined three 5G related KPIs which cannot be grouped and compared into 2021 and
2022 measurements but took place by Rohde and Schwarz and Skylark equipment in 2022. Download
and upload could be confirmed in the three trial periods, the same holds for the Packed Error Rate (H-
KPI15). For Precise Positioning, improvements down to 10cm levels were found which means lane
detection for autonomous driving needs such technology for ensuring safety in urban road conditions.

Available 5G bandwidth on
urban roads (H-KPI13)

204 DL mbit/s 182 231 199

585 uL mbit/s | 523 | 63,1 | 60,1

Positioning quality on urban

road networks with 5G (H-

KP114)
12,2 no correction m 14,6 11,3 10,7
0,6 correction m 0,8 0,5 0,5

Latency by 5G cellular
communication in urban
areas (H-KPI15)

Upload [ atency Edge ms

21,6 Download Latency Edge ms 234 19,9 21,5
Upload Latency Cloud ms

25,3 Download Latency Cloud ms 27,5 24,9 23,5

Packed Error Rate (PER) in 5G
NSA production network

12 % 123 | 136 | 101
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As part of the 5G-LOGINNOV project novel 5G technologies and cutting-edge prototypes were
implemented, tested and verified in the Living Lab Koper (LL Koper), which were tailored for the
particular port environment. These include a 5G NSA system deployed over public infrastructure
extended with a private core network operating on band n7 (20 Mhz of spectrum) and n78 (100 Mhz of
spectrum), 5G SA systems as fully private mobile system infrastructure operating on band n78 (20 Mhz
of spectrum) with support for 5G slicing and assured QoS, MANO-based services and network
orchestration, Industrial 10T devices, Al/ML based video analytics, drone-based and wearable camera-
based security monitoring, etc.
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The deployment of the 5G mobile network in the Port of Koper was not only a development challenge,
but also an operational one. Use of high end 5G SA devices were depended on the availability of
commercial chipsets and 5G products, especially those related to the support of eMBB and mMTC
features. To add true added value to the deployed 5G systems cloud infrastructure in the port was
extended with the Al capabilities (GPU cards) and three groups of uses cases with several
demonstrators were investigated and verified in the port operational environment with the target to
optimise logistic processes, ensure port security and workers safety.

Simple integration of new use cases!
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4.1 5G Network deployment and evaluation
4.1.1 5G NSA Network Deployment

A 5G NSA (Non-Standalone) private network refers to a type of 5G network architecture that relies on
existing 4G infrastructure for certain functionalities. In a Non-Standalone 5G network, the 5G radio
access network (RAN) is deployed alongside the existing 4G core network. The User Plane of the
Evolved Packet Core (EPC) was strategically deployed on-premise of LL Koper. This local deployment
facilitates efficient data forwarding and processing within the organization's premises, ensuring low-
latency data transmission. The Control Plane, responsible for signaling and control functions, continues
to operate within the established 4G public core network infrastructure, ensuring a seamless transition
to 5G.

The 5G NSA network in LL Koper is designed exclusively for port (private) operations, providing
enhanced security and control over network resources and traffic flows. The PGW and SGW (data
plane) parts of the core network are deployed on-premise in the LL Koper facility, while the HSS and
MME (control plane) remain part of Telekom Slovenije's public network. Operating on dedicated
spectrum bands (n78 and n7) allocated to the organization ensures reliable and interference-free
connectivity within the defined coverage area.

Telekom Slovenije

location in Ljubljana -—-

\ LL Koper closed/protected

area in Port of Koper

UE

The presented architecture ensures that all mobile data and data flows generated in LL Koper never
leaves the physical area of the Port of Koper.

o




4.1.2 List of Key Performance indicators

Area Trgfflc K-KPI12 6.25 Mbps
Capacity
. LTE 65 MHz + NR
Bandwidth K-KPI14 100MHz
Conneqtlon K-KPI15 37.500 devices/km2
Density
Availability K-KPI13 99,98 %
End-to-End K-KPI17 25 ms
Latency
One-way Latency 15 ms

All of the presented KPIs were measured with the dedicated tools, as presented in the following
chapters. The only exceptions are K-KPI112 and K-KPI115, which were calculated using the radio network
planning tools from Telekom Slovenije.

4.1.3 Methodology and Measurement Tools

On private 5G-based mobile services provided by the national MNO (Mobile Network Operator) we
obtained KPIs from the monitoring and control systems of the radio access network that we use for the
public network. We calculated certain KPIs from raw data. For instance, KPIs such as End-to-End
Latency and One-way Latency were derived from RTT (Round-Trip Time) measurements or
measurements between the device and the server.

To gather performance metrics for the 5G network, we employed the ININ Quality Monitoring System,
gMON4, within the LL Koper environment. qMON is a suite of network performance testing and
monitoring tools seamlessly integrated into a centrally managed product designed for mobile, fixed, and

4 The gMON System is a commercial test automation tool from ININ that was extended to support 5G testing capabilities in the
5G-PPP project 5G-INDUCE, Grant Agreement ID: 101016941.
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cloud environments. It facilitates end-to-end measurements, realistic load generation, automation of
testing and measurement, and consists of four main system components (Figure 85):

e Distributed autonomous gMON agents integrated into mobile 5G User Equipment (UE) or fixed
devices, including the Samsung Galaxy Series mobile phone and M2M clients, such as
industrial x86 platforms (iBase and Avalue). Software clients are also packaged as Virtual
Network Functions (VNF), Virtual Machines (VM), or Docker containers.

e Centralized cloud-based system management (QMON Manager).

e (JMON Reference Server supporting network (e.g., Iperf servers) and application reference
points (e.g., ETSI Kepler Web server) to perform end-to-end performance testing.

e Centralized measurements results (KPIs) collector and database (QMON Collector) supporting
real-time monitoring and advanced cloud-based analytics (QMON Insight component). The
analytics are powered by either enterprise-ready MySQL/ms-SQL tools or a cloud-native
Prometheus-based stack, both supporting Grafana, while advanced post-analytics is provided
by Tableau.

The system is capable of measuring and collecting over 100 KPIs related to network, services,
applications testing (DNS, ping, FTP UL, FTP/HTTP DL, iPerf UDP/TCP, web, etc.), as well as 5G and
radio testing (e.g., RSSI, RSRP, SNIR, TxPower, etc.). Tests and measurements are executed between
agents or between the agent and a qMON Reference Server.

In LL Koper, we deployed Reference Servers on Portable NFVI Edge with private 5G SA system, LL
Koper Cloud, and for additional reference to verify LL Koper outside connectivity, in Telekom Slovenije
Cloud in Ljubljana.

15 Grafana
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The gMON system was employed in LL Koper for various tests, including 5G drive testing, end-to-end
Quality of Service (QoS) and Quality of Experience (QOE) monitoring of network and services, 5G NR
coverage and performance assessment, and live 5G network and service troubleshooting. The gMON
agents used included commercial 5G UEs based on Samsung S20, Samsung S21, Samsung S23, and
OnePlus 9 smartphones, as well as a 5G I1oT Gateway from ININ extended with gMON agent capabilities
that were deployed on stationary locations in LL Koper (STS Crain, Light tower) and on Terberg trucks
to perform continuous drive testing of the 5G NSA mobile network and to verify performance of a private
5G SA network.



As part of the final test for the TRITON use case from Hellenic Drones, we also conducted drone-based
testing of a 5G NSA mobile network to assess the 5G NR coverage and performance of a mobile system
in areas that are difficult to access. An example of the results of the drone test, showcasing 5G NR
coverage with RSRP signal levels, is presented in Figure 87.

4.1.4 Results

To evaluate and confirm the targeted Key Performance Indicators (KPIs) for the deployed 5G NSA
network, a series of drive and continuous monitoring tests on stationary locations were conducted in LL
Koper. Following the initial deployment of the 5G NSA network, the first drive test using gMON 5G test
automation systems (Figure 88) was performed in February 2022 to assess network performance and
coverage. The analytics of the 5G NR coverage test are presented in Figure 89, revealing that in some
targeted 5G demonstration areas, the NSA radio layer was lacking. The initial drive test served as input
for optimizing the deployed 5G RAN, leading to the activation of additional cells operating on band n78.
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To validate the results of the newly deployed 5G NR cells, an additional drive test was conducted in
April 2023. As evident in the gMON analytics (Figure 90) the coverage with 5G NR in the targeted
demonstration area reached 100%. Subsequent to this, a detailed assessment of performance metrics
was carried out. Figure 91 illustrates that the 5G NSA channel bandwidth capacity assigned to the 5G
User Equipments (UES) is up to 160 MHz of spectrum (K-KPI114 - combined LTE and 5G NR layer). The
assessment of the 5G NR signal level indicates that the minimum Reference Signal Received Power
(RSRP) never dropped below -105 dBm, aligning with the planned conditions and ensuring stable radio
performance even at the cell's edge (end of the container yard).

T99-TotalBw

s Technology / Alias Hash

adio Acce:

4.1.4.1 Continuous 5G drive testing with yard trucks

To evaluate the deployed 5G NSA network under realistic operational conditions, ININ’s 5G loT GW
with the gMON agent was deployed on five yard trucks (Terberg), which are used daily in the port
operation for the transhipment of containers on the container terminal in LL Koper. When the yard trucks
are operational the qMON system enables continuous network performance monitoring of the 5G NR
radio metrics (e.g., RSRP, RSRQ, SINR, TxPower, channel BW and other radio performance metrics
are sampled with the 1,5 s interval) and data plane performance, including download and upload
throughput and latency. Performance metrics are collected, showcased, and visualized in real-time
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directly on the 5G GW management or in the backend analytics. For more in-depth analytics, collected
metrics are exposed to Bl tools such as Tableau.

Agent map @ scLocinnov

dap  Satellite

As an example, the results for the 24-hour 5G drive period for one of the yard trucks are presented in
the figures below. The Figure 95 depict the 5G drive testing with yard trucks, showcasing 24-hour end-
to-end latency (K-KPI17) and downlink and uplink throughput performance (K-KPI114) on a time graph.

The measured end-to-end latency (K-KPI117) was 26.4 ms (mean), with a minimum of 8.5 ms and a
maximum of 83.4 ms. In the case of downlink direction, the achieved speed to the LL Koper cloud was
177 Mbps (mean), with a minimum of 21 Mbps and a maximum of 360 Mbps. For uplink direction,
achieved throughput speeds were 39 Mbps (mean), with a minimum of 7 Mbps and a maximum of 143
Mbps.




& 56

Since the deployed LL Koper 5G NSA base stations from Telekom Slovenije are shared with commercial
mobile traffic, observed variations in performance metrics (Figure 95) can be attributed to the current
load of the RAN and, in the case of downlink and uplink throughput, also to the current radio conditions
(e.g., RSRP and SINR signal levels) that vary depending on the truck location in the port yard. For the
RSRP signal level (Figure 96), it is -90.2 dBm (mean), -66 dBm (max), and -115 dBm (min), clearly
showing changing 5G NR channel conditions that can be observed in demanding industrial
environments.

Also, due to the fact that the placement of the 4 antennas supporting 4x4 MIMO on the 5G GW deployed
in the yard trucks is in a suboptimal location (Figure 93). One 2x2 antenna is inside the metal structure
in the truck cabin, another 2x2 antenna is on the front truck glass. This also contributes to the
degradation of the overall 5G NR performance, which could be improved by placing the 4x4 antenna on
the roof of the yard truck.

With the post-analytics of the collected metrics, several aspects of the operational 5G NSA network can
be visualized on the GIS to be assessed and used for the ongoing optimization of the deployed mobile
network in LL Koper.

Some of the used optimisation metrics such as achieved radio signal coverage, operational bands and
available throughput are presented on the Figure 97, Figure 98, Figure 99 and Figure 104, respectively.
They showcase combined measured values for all 5 yard trucks for the duration of 2 months.
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Figure 98: LL Koper - Evaluating 5G NSA system with drive testing using 5 yard trucks — 5G NR
operational bands.
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Figure 99: LL Koper - Evaluating 5G NSA system with drive testing using 5 yard trucks — DL and UL
throughput on a map.
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Figure 100: LL Koper - Evaluating 5G NSA system using drive testing using 5 yard trucks —
Cumulative DL (left) and UL (right) throughput presented as box plot.
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The achieved end-to-end latency (K-KPI117), as depicted in (Figure 101), falls within the expected range,
being less than 25 ms (mean) for all yard trucks during the two-month testing period. Additionally, the
one-way delay, calculated by dividing the end-to-end latency by half 12.5 ms (mean), is within the
targeted KPI range.The detailed steps and optimization methods used present confidential information
and are restricted to the operational teams of Telekom Slovenije; they are not captured in the report.

4.1.4.2 Continuous 5G network performance monitoring using strategic
locations in the port

To complement continuous drive testing conducted with yard trucks, ININ’'s 5G GW with integrated
gMON agents were strategically positioned on the port STS crane (Figure 86), and another one in the
power shelter (Figure 86), and they were utilized for continuous 5G NSA network performance
monitoring. In this case, ININ’s 5G loT GW operated with uninterrupted power, as such, the qMON
system facilitates continuous 24/7 network performance monitoring of 5G NR radio metrics (e.g., RSRP,
RSRQ, SINR, Tx Power, channel BW, and other radio performance metrics sampled at 1.5s intervals)
and data plane performance, including download and upload throughput and latency.

Similar to drive testing with yard trucks, performance metrics are collected and can be showcased and
visualized in real-time directly on the 5G GW or in the backend analytics. For more in-depth analytics,
the collected metrics are also exposed to Bl tools such as Tableau.

[ —

Agent map
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Results for the 7-day period of the deployed 5G GW operating in continuous mode (24/7) at the power
shelter are presented in the figures below. Figure 103 depicts the 5G NR results for a stationary
deployed 5G GW, showcasing the 7-day radio network performance (RSRP, RSRQ, SINR, TX Power)
on a time graph:

NR RSRP values: -98.5 dBm (mean), -91 dBm (max), -104 dBm (min);
NR SINR values: 0.33 dB (mean), 1.20 dB (max), 0 db (min);

NR RSRQ values: -12.5 dB (mean), -8 dB (max), -18 db (min);

NR Tx Power values: 18.5 dBm (mean), 21 dBm (max) -32 dBm (min).

From a radio perspective (with a mean RSRP value of -98 dBm), the 5G GW is located on the 5G NR
cell edge. Consequently, the overall end-to-end performance is degraded, as observed in the achieved
values for the downlink and uplink throughput testing (Figure 104). However, due to the fact that the 5G
GW is positioned at a stationary location, 5G NR signal is uniform, more stable, and predictable
compared to the 5G drive test results with yard trucks (Figure 96).

ntern ls Industrial IoT Gateway & scLocinnov

NSTITU

Figure 104 depicts the end-to-end throughput results for a stationary deployed 5G GW, showcasing the
7-day performance of the 5G NSA network (uplink and downlink throughput between the 5G GW and
LL Koper cloud) presented on a time graph:

e Downlink speed values: 225 Mbps (mean), 345 Mbps (max), and 6.97 Mbps (min);
e Uplink speed values: 21.0 Mbps (mean), 43.4 Mbps (max), 4.81 Mbps (min).

The achieved maximum download and upload speed is limited due to the severely degraded 5G NR
signal at the cell edge and as a consequence, more robust modulation and coding scheme need to be
applied to the 5G NR radio. Variations in the throughput that are less than maximum can be attributed
to the utilisation of the base station with the commercial traffic, as the base station is shared. Daily
network utilisation cycles can be also clearly seen, where during the night, the network is less utilised
and as such, the download and upload performance is higher than during the day cycles.
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Figure 105 depicts the end-to-end latency results for a stationary deployed 5G GW, showcasing the 7-
day performance of the 5G NSA network (Round-Trip Time between the 5G GW and LL Koper cloud)
presented on a time graph: End-to-end latency (K-KPI17): 15.5 ms (mean), 80.6 ms (max), 8.10 ms
(min). In addition, the percentage of the successful ICMP tests during the observed 7 day period shows
an reliability of the 5G NSA of 100% (K-KPI18).

End-to-end latency of 15.5 ms presents a promising result for 5G NSA network operating in TDD mode
and a 5G GW placed on the cell edge. As in the case of drive testing, the variation in the end-to-end
latency can be attributed to the utilization of the 5G NR with commercial traffic, where 5G UEs compete
for the same radio resources.
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Figure 106 depicts the results for a stationary deployed 5G GW, showcasing the 7-day performance of
the 5G NSA network for the browser application accessing web services deployed on a LL Koper cloud.
Web MOS is a metric that assesses quality of experience for the users using web applications5.

5 A novel user satisfaction prediction model for future network provisioning https://link.springer.com/article/10.1007/s11235-013-
9853-4
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Performance is assessed by Web MOS measurement and is presented on a time graph. Web MOS
factor values: 4.17 (mean), 4.37 (max), 3.32 (min). In addition, the percentage of the successful Web
tests during the observed 7-day period shows an reliability of the 5G NSA of 100% (K-KPI18).

Variation in Web MOS can be mainly attributed to the needed download time of a complex web
application and is tightly dependent on the observed variation in the download throughput.

nternet I Industrial loT Gatewa 5GLOGINNOV
NSTITUTE v ®

o fpmphinioh of Jaata) | o

| P4 L b 1 01 o | 4 \MA | AR o A b AR i B

| Vil [y vl 'Y 15 4 Wk ™. (] W [T il

R T Al o P T
|

\ ‘ |

4.2 UC1: Management and Network Orchestration platform
(MANO)

As already mentioned in the initial project review, the name of the use case UCL1 is not descriptive
enough of the all-actual targets, but it remained in its original form due to alignment with the signed GA.

4.2.1 Description and Motivation

The motivation behind UC 1 was to improve the 5G capabilities and network performance in LL Koper
by deploying a Private 5G system operating in SA mode and an Industrial loT Gateway. This gateway
is designed to support both NSA and SA networks, facilitating the connection of non-5G devices (e.qg.,
UHD cameras) and other sensors. With the 5G SA we target to achieve better network performance
(e.g., low latency) and to support more advanced network services, such as eMBB and mMTC, for the
most demanding port use cases. The Private 5G system and the Industrial loT Gateway, developed by
ININ, enabled LL Koper to create a compact and flexible private network that can be deployed,
configured, and managed in a cloud-native way, using container-based technologies and orchestration
mechanisms. Deployed system supports slicing features that allows us to allocate dedicated network
resources and parameters for different types of traffic and loT devices.

ININ deployed and tested a Private 5G System designed and developed for the critical-communications
verticals in the sister ICT 42 project, Int5Genté. The motivation for developing the private 5G system
was to provide a compact and flexible solution for high-performance and reliable connectivity needed in
critical infrastructures, such as ports. ININ’s Private 5G, called MobileONE, is a compact 5G network
that operates in 5G SA mode and integrates 5G RAN and 5G Core Network capabilities (up to 3GPP
Release 17 specifications). It provides a compact NFVI environment (x86 based Network Appliance, 1U

% Integrating 5G enabling technologies in a holistic service to physical layer 5G system platform, Grant agreement ID: 957403,
https://intSgent.eu/.
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size) that can run 5G RAN and 5G core network functions on a single Kubernetes instance. Kubernetes
platform supports container-based deployment of 5G network functions, MANO-compliant orchestration
and other cloud-native mechanisms (e.qg., self-healing, scaling etc.). ININ deployed the 5G CN and 5G
RAN as network functions (NF) and corresponding network services (NS) using Kubernetes deployment
principles that can be orchestrated by MANO/OSM network orchestrator.

One of the main challenges that we faced when the 5G-LOGINNOV project started (September 2020)
was the limited availability on a market of industrial-grade 10T gateways that supported 5G operation in
SA mode. This mode offers better system performance (e.g., latency, uplink bandwidth), reliability, and
security for 10T applications than NSA mode. Therefore, ININ decided to extend its rMON loT platform?
with a new gateway that supports 5G SA capabilities and other advanced functions such as eMBB and
mMTC slicing. These functions enable LL Koper to deliver assured bandwidth with slicing support and
low latency for eMBB applications, as well as M2M connectivity for mMTC applications. ININ’s rMON
0T platform also incorporates a centralised cloud-based management and device monitoring platform
that was extended with cloud-native capabilities and options for MANO/OSM-based orchestration. This
allows us to deploy, configure, and manage 5G-based loT network functions and services in a flexible
and scalable way, using container-based technologies and optional orchestration mechanisms. The new
gateway platform incorporates also advanced functions, such as compute and storage capabilities that
can be used for running containerised application (e.g., running ININ’s 5G test automation systems
gMONS?) at the far-edge. As such prepared gateway system was used to support several use cases in
the LL Koper (UC5, UC6, UC3) and to support automation of 5G performance monitoring of the deployed
NSA and SA mobile networks in the LL Koper.

Today, in addition to the 5G-LOGINNOV project, the developed Industrial gateway platform from ININ
is used in several 5G-PPP projects. To support 5G connectivity for the railway systems (IntS5gent
project®) to assure 5G network performance testing of the smart factory (5G-INDUCE project!?) and the
smart port (5G-VITAL project!?) and as a platform that was extended with the NEF and CAPIF
capabilities in the 5G-EVOLVED project??.

4.2.2 Use Case Setup

Private 5G system was prepared with the options to expose the key 5G RAN and Core network
parameters (e.g., MCC/MNC, Band, BW, Cell ID, PCI) using virtual network function descriptors (VNFD)
and network service descriptors (NSD). Private 5G System was used to demonstrates the potential of
5G for various use cases and scenarios in the operational port environment that require advanced 5G
security services, low latency communications or high throughput requirements in the uplink direction,
i.e., Drone and wearable cameras real time video streaming.

7 https://www.iinstitute.eu/pdf/Brosura_rMON-Maj2022.pdf
8 https://www.iinstitute.eu/pdf/Brosura_gMON-2022.pdf

® https://www.int5gent.eu/

10 https://www.5g-induce.eu/

1 https:/lwww.vital5g.eu/

12 https://evolved-5g.eu/
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Due to the fact that, in Slovenia, the foreseen tender for the private network deployments targets
dedicated frequencies in the range of 2300 — 2320 MHz and 3400 — 3420 MHz that could be also used
for the 5G network deployment in the Port of Koper, the RRU with n78 band and a channel bandwidth
of 20 MHz operating in TDD mode was the primary operational profile for the deployment of the private
5G RAN in the LL Koper.

5G NR | SA
n78 | TDD
BW 50 Mhz
2x2 MIMO
20 W per port

Prepared (figure left) and deployed (right) Private 5G System in LL Koper showcasing portability and
flexibility of the solutions — System testing in April 2022. Key capabilities of the Private 5G mobile system
are presented in the tables that follows.



5G NR BBU

Prepared and deployed
as a single container

5G NR RRU

N78,
directional and
omnidirectional antenna
options were verified

Compact 5G core
network

Prepared and deployed
as a single container

All 5G FDD and TDD bands (sub-6G Bands)
Slicing eMBB, mMTC, with QoS Flows (3GPP 5QlI)
NG interface (NGAP and GTP-U) to 5GC
XnAP gNb-gNb

Up to QAM 256 DL
UP to QAM 256 UL

DATA SCS: 15 and 30 KHz
SBS SCS: 15 and 30 KHz

up to 20W per port

Up to 50 MHz BW

2x2 MIMO DL
2x2x MIMO UL

AMF, AUSF, SMF, UPF, UDM and 5G-EIR
Encryption | AES, SNOW3G, ZUC
Encrypted SUPI/IMSI registration (ECIES)
USIM Auth | XOR, Milenage, TUAK 5G-AKA
Slicing with QoS Flows (3GPP 5QlI)
Interfaces | NG (NGAP and GTP-U)

Local CMAS and ETWS messages

The following figures present the private 5G system management capabilities that show some of the
deployed configuration and system provisioning capabilities.
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In the LL Koper, a comprehensive ecosystem has been established, featuring not only the Private 5G
system but also the rMON IoT platform equipped with developed Industrial 5G Gateways to support the
activities of UC1, UC3, and UC6. The components of the rMON loT platform, including the rMON
Manager and rMON collector functions (Figure 111), were prepared using the cloud-native capabilities
of Kubernetes, complemented by the support of MANO/OSM orchestration.

|Agent map Manage agents

et la Industrial loT Gateway @ 5GLOGINNOV
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To ensure seamless connectivity, ININ’s 5G Gateways were strategically deployed on the STS cranes
(Figure 114) and light towers (Figure 115). This placement guarantees the continuous transmission of
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video streams from the deployed UHD cameras, contributing to automating container transhipment
and enhancing surveillance monitoring.

Furthermore, additional ININ’s 5G Gateways were strategically integrated into the Terberg trucks.
These deployments serve a dual purpose: first, they provide a robust platform for the deployment of
gMON 5G test automation capabilities, showcasing continuous 5G network monitoring capabilities
within the LL Koper. Second, they play a pivotal role in facilitating the deployment of cameras for the
worker safety use case (UC3), a collaborative effort with LL Athens as part of cross-Living Lab activities.

The synergy between the Private 5G system and the rMON loT platform, augmented by the strategic
deployment of ININ's 5G Gateways, exemplifies a holistic approach to connectivity and automation in
the Living Lab environment. This integrated solution not only supports specific use cases but also lays
the foundation for a dynamic and adaptive infrastructure, fostering innovation and efficiency in diverse
operational scenarios.



Demonstrations of ININ's Private 5G system and the developed 5G Industrial Gateway were conducted
on several occasions for industrial partners and Slovenian governmental officials. Notable events
included the AKOS Industrial event (Agency for Communication Networks and Services of the RS) in
September 2023 in Ljubljana (Figure ) and the 5G-LOGINNOV final event in Luka Koper/Port of Koper,
Slovenia, in November 2023 (Figure 117). On both occasions, national TV (www.rtvslo.si) was present,
reporting the events for the news?3,

! u Il "

13 RTV Slovenia show about the 5G and 6G: https://365.rtvslo.si/arhiv/znanost-in-tehnologija/174989963
14 https://www.linkedin.com/posts/internet-institute-ltd_5g-5g-6g-activity-7114690731109187584-
A2Bi?utm_source=share&utm_medium=member_desktop

15 https://365.rtvslo.si/arhiv/znanost-in-tehnologija/174989963



4.2.3 List of Key Performance Indicators

The presented table summarizes 5G network and deployment KPIs defined for the UC1 in (5G-
LOGINNOV, D1.4: Initial specification of evaluation and KPIs, 2022), the targeted values, and the final
measured values achieved during testing and verification in LL Koper. Detailed explanations of the tools
used, test methodologies, and final measured values, along with results comments, are presented in
the chapters that follow.

Dedicated

private 5G

SA mobile
system

5G loT
backend
system

Bandwidth

Bandwidth

End-to-End Latency

Components Onboarding
and Configuration (Backend)

Deployment Time (Backend)
Time to Scale (Backend)

Service Availability
(Backend)

Components Onboarding
and Configuration (Agent)

Deployment Time (Agent)

K-KPI114

K-KPI114

K-KPI17
K-KPI1

K-KPI2
K-KPI3
K-KP14

K-KPI5

K-KPI16

Downlink

Uplink

20 ms
5 min (per
single
component)
15 min
5 min

99,99 %

3 min (per
single
component)

5 min

Depends on the
used 5G NR channel
bandwidth and
assigned TDD profile

Depends on the
used 5G NR channel
bandwidth and
assigned TDD profile

Achieved

Achieved

Achieved
Achieved

Achieved

Achieved

Achieved



Components Onboarding K-KPI7 10 min (per Achieved
and Configuration (Backend) single
component)
Dedicated Deployment Time (Backend) K-KPI8 20 min Achieved
private 5.G Time to Scale (Backend) K-KPI9 10 min Achieved
SA mobile

system Service Availability K-KPI10 99,99 % Achieved
(Backend)

Slice Reconfiguration K-KPI11 5 min Achieved
(Backend)

4.2.4 Methodology and Measurement Tools

To verify the developed and deployed 5G systems, several functional, interoperability, and performance
tests were initiated, and dedicated tools were prepared and integrated into the LL Koper.

For 5G NR, 5G core network, and end-to-end performance testing, ININ’'s gMON systems were utilized
to assess several radio performance metrics (e.g., RSRP, RSRQ, SINR, CQI, channel BW, MIMO mode,
etc.) and data plane performance, including download and upload throughput, latency. For more details
about the gMON system please check the chapter 4.1.3. Based on the test type different gMON agent
form factors were used, such as integrated qMON agent software on the ININ’s Industrial loT GW
(Figure 119), a dedicated smartphone with the qMON agent application, and RPi-based gMON agent
for performance and application-based testing on the Nokia FastMile 5G gateway. To support different
test methodologies gMON reference server instances were deployed on the cloud in LL Koper and on
the same Edge Kubernetes NFVI as the private 5G system.

l l 1| Connectad: 5G.
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Management and debugging capabilities of the private 5G system included integrated 5G NR real-time
performance tracing (CQIl, MCS, retransmits, bitrate, MIMO mode, PHR levels) and 5G system
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signalling tracing intercept capabilities for capturing MIB, SIB, RRC, AS and NAS-related signalling
messages.
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Similar capabilities were developed and applied to the ININ’s Industrial loT GW, with integrated 5G NR
real-time performance monitoring (RSRP, RSRQ, SINR, TX Power) and network debugging capabilities
(Figure 120).
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Additionally, the management and debugging capabilities of Kubernetes (Figure ) and MANO/OSM
(Figure ) were employed to assess the private 5G system and loT backend system components'
deployment times and other operational metrics.
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While some tests, such as the assessment of system deployment times, were performed manually,
others supported by dedicated 5G test automation tools like ININ’'s qMON system, enabled full
automation of test procedures. As such, several million KPI samples were taken during the duration of
the 5G-LOGINNOV project, enabling the adoption of an iterative test and development approach. Test
results were conveyed to the DevOps team, modifications were made to the systems, and the same
tests were repeated.

4.2.5 Results

In the following sections, the results of the functional, interoperability, and performance testing for the
utilized Private 5G system and the developed and deployed Industrial 5G 10T system from ININ are
provided.

4.2.5.1 Deployment and operational KPI for a private 5G SA mobile system

We conducted a series of tests to measure the deployment and operational KPIs of private 5G SA
mobile system, which was deployed on the Edge NFVI with the support of the MANO/OSM orchestrator.
The mobile system consists of two main components: a BBU and a 5G CN. The test procedures included
the following KPIs:

- Components Onboarding and Configuration (Backend): This KPI presents the time it takes
to onboard and configure a single component of the system (i.e., BBU or 5G CN). The achieved
values for the BBU and the 5G CN were 5 minutes and 4 minutes, respectively, which are faster
than the target value and indicate a high optimisation of the process.



- Deployment Time (Backend): This KPI presents the elapsed time from the moment the
deployment is started via the orchestrator until the system is ready to use. The achieved values
for the BBU and the 5G CN were 2 minutes and 30 seconds, respectively, which are much
shorter than the target value and indicate efficient deployment.

- Time to Scale (Backend): This KPI presents the elapsed time from the moment the scaling
request is triggered until the component is scaled and ready to use. The achieved values for the
BBU and the 5G CN were 3 minutes and 2 minutes, respectively, which are shorter than the
target value and indicate flexibility and adaptability of the private mobile network.

- Service Availability (Backend): This KPI presents the percentage of successful service tests
(WEB) to the reference service endpoint over a period of time. The measured value for the
system was 99.99865%, which is higher than the target value and indicates a reliable and stable
system.

- Slice Reconfiguration (Backend): This KPI presents the time it takes to reconfigure the slices
of the system, which are logical networks with different performance and QoS parameters for
different types of traffic and 5G UEs. The achieved values for the BBU and the 5G CN were 3
minutes and 2 minutes, respectively, which are faster than the target value and indicate a
responsive and customizable system.

Management and debugging capabilities of the used Kubernetes and MANO/OSM systems were
employed to assess the deployment times and other operational metrics of the private 5G system
components. Several manual runs were triggered to collect observed metrics.

The results show that private 5G SA mobile system achieved or surpassed the target values for all the
deployment and operational KPIs, demonstrating its high performance and suitability.

Components K-KPI7 10 min (per BBU: 5 min
Onboarding and single 5G CN: 4 min
Configuration component)
(Backend)

) Deployment Time K-KPI8 20 min BBU: 120 s
Dedicated (Backend) 5G CN:30s
private 5G
SA mobile Time to Scale K-KPI9 10 min BBU: 180 s

system (Backend) 5G CN: 120 s
Service Availability K-KPI10 99,99 % 99,99865 %
(Backend)
Slice Reconfiguration  K-KPI11 5 min BBU: 180 s
(Backend) 5G CN: 120 s

4.2.5.2 Deployment and operational KPI for 5G 10T backend system

A series of tests were conducted to assess the deployment and operational KPIs of 5G IoT backend
system, developed to support industrial 10T applications and services in the LL Koper. The 5G loT
backend system comprises three main components: a Manager, a Reference, and a Reporter. The
Manager oversees the management and monitoring of IoT devices and the network, while the Reference
provides a service endpoint for 0T devices to connect and communicate. The Reporter collects and
reports data and performance metrics from loT devices and the network. Additionally, the system
includes an Agent, a software component running on loT devices enabling interaction with the backend
system.



& 56

The tests covered the following KPls:

Components Onboarding and Configuration (Backend): Measures the time to onboard and
configure a single backend system component. Manager, Reference, and Reporter component
achieved 3 minutes, 5 minutes, and 5 minutes, respectively, indicating a high optimisation of
the onboarding process.

Deployment Time (Backend): Measures the time from orchestrator initiation to backend system
readiness. Manager, Reference, and Reporter components achieved 120 seconds, 60 seconds,
and 180 seconds, respectively, demonstrating efficiency of the deployment procedure.

Time to Scale (Backend): Measures the time from scaling request initiation to backend
component readiness. Manager, Reference, and Reporter component achieved 140 seconds,
80 seconds, and 200 seconds, respectively, showing a flexible and adaptable system.

Service Availability (Backend): Measures the percentage of successful service tests (WEB) to
the reference service endpoint over time. Backend system achieved 100%, indicating a highly
reliable and stable system.

Components Onboarding and Configuration (Agent): Measures the time to onboard and
configure a single agent on the IoT device. Agent achieved 150 seconds, showcasing high
process efficiency.

Deployment Time (Agent): Measures the time from orchestrator initiation to agent readiness.
Agent achieved 120 seconds, demonstrating quick and easy deployment.

Management and debugging capabilities of the used Kubernetes and MANO/OSM systems were
employed to assess the deployment times and other operational metrics of the 5G 10T backend system

components. Several manual runs were triggered to collect observed metrics.

The results demonstrate that our 5G 10T backend system meets or exceeds the target values for all
deployment and operational KPIs, highlighting its high performance and suitability for various loT

applications and services over the 5G network.

Components Onboarding K-KPI1 5 min (per Manager: 3 min
and Configuration (Backend) single Reference: 5 min
component) Reporter: 5 min
Deployment Time (Backend) K-KPI2 15 min Manager: 120 s
Reference: 60 s
Reporter: 180 s
5G loT Time to Scale (Backend) K-KPI3 5 min Manager: 140 s
backend Reference: 80 s
system Reporter: 200 s
Service Availability K-KP14 99,99 % 100 %
(Backend)
Components Onboarding K-KPI5 3 min (per 150 s
and Configuration (Agent) single
component)

Deployment Time (Agent) K-KPI6 5 min 120 s
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4.2.5.3 ININ’s 5G IoT GW functional testing

We performed various functional tests on deployed Industrial IoT Gateway to verify its 5G capabilities
and performance in different scenarios and configurations in the port environment. The tests included
the following aspects:

- 5G NRtransmission mode: ability to transmit and receive data using different 5G NR modes,
such as FDD and TDD.

- 5G NR MIMO mode: support for MIMO options, which enhances the data rate and reliability of
5G NR signals by using multiple antennas.

- Supported 3GPP Access: GW compatibility with different 3GPP access technologies, such as
5G SA, 5G NSA, LTE, HSPA.

- GNSS: Support for global navigation satellite system (GNSS) services, such as GPS,
GLONASS, and Galileo, which provide accurate positioning and timing information.

- APN: ability to connect to different access point names (APNs), which identify the network
services and settings for the gateway's data connection.

- BWI imiting: ability to limit the bandwidth of 5G NR connection, by setting a maximum value.

- 5G NR Slicing - Network Delegated: support for 5G NR slicing, which allows the creation of
multiple logical networks with different performance and quality of service (QoS) parameters on
the same 5G NR and 5G CN network. We used the network delegated approach, which means
the 5G CN assigns the slice parameters to the gateway based on its service profile in UDM.

- Mobile Network Type (Test, Private, Public): ability to connect to different types of mobile
networks, such as test, private, or public, depending on the targeted use case.

- Combining 4G and 5G carriers (LTE CA + 5G NR): ability to combine 4G and 5G carriers,
using LTE carrier aggregation (CA) and 5G NR dual connectivity (DC), to achieve higher data
rates.

- Cell Broadcast Alert: ability to receive and display broadcast alert messages, such as
emergency or safety notifications, initiated on the management of the private 5G system.

We evaluated the gateway's performance and functionality in different use cases and scenarios (UC3,
UC5, UC6), such as eMBB and mMTC, in the real port environment. The table that follows presents a
summary of the test results.

5G NR transmission mode TDD Pass
FDD Pass
5G NR MIMO Mode DL SISO Pass
UL SISO Pass
DL 2x2 MIMO Pass
UL 2x2 MIMO Not available
DL 4x4 MIMO Pass
UL 4x4 MIMO Not available
Supported 3GPP Access 5G SA Pass

5G NSA Pass



4G Pass

3G Pass

GNSS GPS, GLONAS, Galileo Pass

APN Auth none Pass

PAP Authentication Pass

CHAP Authentication Pass

IP Assignment Dynamic IP Pass

Static IP Pass

BW limiting APN Aggregated Max BW Pass

5G NR Slicing - Network Delegated eMBB,SST1,SD O Pass

mMTC SST 3,SD 10 Pass

GBR slice with strict BW Pass

non-GBR slice Pass

non-GBR slice with BW limit Pass

Mobile Network Type Private: 99901 Pass

(Test, Private, Public) Test: 00101 Pass

Commercial: 29341 Pass

Commercial: 29340 Pass

Commercial: 20201 Pass

Commercial: 22288 Pass

Commercial: 24004 Pass

Roaming Verified at several EU Pass
Operators

Combining 4G and 5G carriers (LTE CA+ Verified at commercial Pass
5G NR) Operators

NR band n78 (SA) 20 MHz Pass

30 MHz Pass

40 MHz Pass

50 MHz Pass

100 MHz Pass

NR band n77 (SA) 20 MHz Pass

30 MHz Pass

40 MHz Pass

50 MHz Pass

60 MHz Pass

90 MHz Pass

100 MHz Pass

NR band n28 (SA) 20 MHz Pass

5G NSA FDD bands Supporting 11 FDD bands Pass

5G NSA TDD bands Supporting 9 TDD bands Pass

Broadcast Alert Receiving EU Alert messages  Not available
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802.3 Interfaces

4.2.5.4 Private 5G SA System — Functional, Interoperability and Performance

Testing

In the following chapter, test results from functional, interoperability, and performance testing are
provided. To ensure test diversity and heterogeneity, in addition to the Private 5G SA mobile system
and 5G IoT GW from ININ, several commercial smartphones (Samsung Galaxy S23, OnePlus 8,

OnePlus 9) and the Nokia FastMile gateway were used.

5G NR TDD Config

5G NR MIMO Mode

APN

IP Assignment

BW limiting

5G NR Slicing

PLMN (MCC MNC) /
Private, Test, Public

Roaming

NR band n78
RRU with n78/n77

TDD 2
TDD 3
TDD 5

DL SISO
UL SISO
DL 2x2 MIMO
UL 2x2 MIMO

PAP user/pass
CHAP user/pass

Dynamic IP
Static IP

APN Aggregated Max

eMBB, SST1,SD 0
mMTC SST 3, SD 10

GBR slice with strict BW
non-GBR slice

non-GBR slice with BW
limit

99901
00101
202011

Different 5GS and USIM
PLMNs

20 MHz
40 MHz
50 MHz

Pass
Pass
Pass

Pass
Pass
Pass

Pass
Pass

Pass
Pass

Pass

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass

Pass

Pass
Pass
Pass

5G Modem operating up to
+802C

1 Gbps, 2.5 Gbps

Pass
Pass
Pass

Pass
Pass
Pass

Pass
Pass

Pass
Pass

Pass

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Fail

Pass

Pass

Pass
Pass

Pass
Pass
Pass

Pass
Pass
Pass
Pass

Pass
Pass

Pass
Pass

Pass

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass

Pass

Pass
Pass
Pass

Pass
Pass
Pass

Pass
Pass
Pass

Pass
Pass

Pass
Pass

Pass

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Fail

Pass

Pass

Pass
Pass

16 5G SA mode on a commercial Smartphones (e.g., OnePlus 9, Samsung S23) is supported only on whitelisted commercial networks.
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NR band n77 20 MHz Pass Fail Fail Pass

RRU with n78/n77 40 MHz Pass Fail Fail Pass

50 MHz Pass Fail Fail Pass

Broadcast Alert Receiving EU Alert Fail Pass Fail Pass
messages

4.2.5.5 Private 5G SA System — Advanced Security Testing

State-of-the-art 5G SA security capabilities, such as secure 5G UE registration with encrypted
SUPI/IMSI identity using asymmetrical encryption!” (public and private system keys) and data plane
integrity, were enforced on the private 5G systems. Verification was conducted by intercepting the
signalling and data plane messages (traces) on the mobile system. A dedicated 5G SA-capable USIM
module was used and prepared with the public asymmetric key derived from the private key used by
the private mobile system in the port.

The results presented in the following Figure 125 showcase the successful deployment and operation
of advanced 5G security services negotiated during the registration procedure between the private 5G
SA mobile system and the utilized 5G UE. The presented traces are valid for the Samsung Galaxy S23
5G UE.

Security function | 5G SA | 4G/NSA (iR E—

Encrypted (SUPI/IMSI) m

(private network registration)

Temporary identity
GUTI

Control plane privacy

Control plane integrity

Registration with encrypted
SUPI/IMSI

Data plane privacy

Data plane integrity 7 m

4.2.5.6 End-to-end 5G slicing with strict BW guaranties

The slicing capabilities of ININ’s private 5G system was verified for the support of network-delegated
5G NR slicing. This feature allows to create multiple logical networks (eMBB and mMTC) with different
performance and QoS parameters on the same 5G NR cell and the connected 5G CN network. The 5G
CN assigns the slice parameters to the attached 5G UE based on its service profile in the UDM.

17 Elliptic Curve Integrated Encryption Scheme (ECIES).
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We utilized the signalling tracing capabilities of the private mobile system to verify the delegation of
slicing parameters from the control plane perspective. In addition, gMON-generated traffic was
employed at the end to test the correct downlink and uplink enforcement from the data plane
perspective. The slicing behaviour was verified using different 5G NR operational modes, including
optimizing TDD profiles and MIMO parameters. The test results are summarised in the following table
and figures.



TDD Config TDD 2 Pass Pass Pass Pass
PLMN: 99901 TDD 3 Pass Pass Pass Pass
MIMO 2x2 TDD 5 Pass Pass Pass Pass
Band: n78

P_max: 30 dBm

Cell Power per port: 30 dBm
Directional antenna:
eMBB:SST1,SD O

Slice BW: no limit

MIMO Mode DL SISO Pass Pass Pass Pass
PLMN: 99901 UL SISO Pass Pass Pass Pass
Band: n78 DL 2x2 Pass Pass Pass Pass

5G NR BW: 20 MHz

P_max: 30 dBm

Cell Power per Port: 30 dBm
Directional antenna:
eMBB:SST1,SDO

Slice BW: no limit

UL 2x2 - - Pass -

BW limiting per 5G UE DL 20 Mbps Pass Pass Pass Pass
PLMN: 99901 UL 20 Mbps?® Pass Pass Pass Pass
MIMO: 2x2

Band: n78

5G NR BW: 50 MHz

P_max: 30 dBm

Cell Power per Port: 30 dBm

Directional antenna:

eMBB: SST 1,SD 0

Slice BW: no limit

5G NR SLICING GBR slice with strict  Pass Pass Pass Pass

PLMN: 99901 BW

MIMO: 2x2

Band: n78 non-GBR slice Pass Pass Pass Pass
5G NR BW: 50 MHz

P_max: 30 dBm BR sli ith
Cell Power per Port: 30 dBm non-GBR slice wit Pass Pass Pass Pass

Directional antenna: BW limit
eMBB:SST1,SDO

NR BW test 20 MHz Pass Pass Pass Pass
PLMN: 99901 40 MHz Pass Pass Pass Pass

MIMO: 2x2 50 MHz Pass Pass Pass Pass
Band: n78

P_max: 30 dBm

Cell Power per port: 30 dBm
Directional antenna

eMBB: SST1,SD 0

Slice BW: no limit

ON the following figure an example of test results is presented for the employed mMTC slice featuring
a Guaranteed Bit Rate (GBR) traffic profile. The specified slice parameters for this test configuration
were as follows: GBR DL/UL Throughput: 9 Mbps (Minimum), Max DL/UL Throughput: 20 Mbps.

This configuration allowed us to evaluate and assess the performance of the mMTC slice under the
defined GBR traffic profile, focusing on its ability to maintain a minimum throughput of 9 Mbps while also
reaching a maximum throughput of 20 Mbps, if available on the 5G NR cell.

18 Radio conditions on the 5G UE side needs to be satisfactory.



More results and findings from bandwidth performance testing scenario are detailed in the subsequent
sections of this report.

4.2.5.7 Bandwidth

As indicated at the beginning n78 RRU with 2x2 was selected for the deployment of the private 5G
system in the LL Koper with the channel bandwidth of 20 MHz in TDD mode. Based on the foreseen
usage of the private 5G system in the port environment 4 different TDD profiles were prepared and
verified:

- TDD 6 profile that was optimised for the uplink intensive port applications such as real-time
video streaming.

- TDD 5 profile was prepared to equally balance available TDD NR slots between uplink and
downlink traffic.

- TDD 3 and TDD 2 profile were used to assure high downlink throughput for the port applications
that need to utilize traffic delivered to the 5G UE.

The test results are depicted in the table below. For the reference we included also the results in the
case of using 50 MHz of channel bandwidth.

Some of the presented KPI performance limitations (achieved download and upload throughput) in the
results below are attributed to the narrow 5G NR channel bandwidth of 20 MHz that was used, and not
to the limitations of the deployed Private 5G SA system or used 5G UE devices.



5G NR RRU

n78
2x2 DL MIMO
2x2 UL MIMO
QAM 256 (up to)

TDD 6 (uplink
intensive)

TDD 5 (Balanced)

Channel BW
20 MHz
TDD 3 (downlink
intensive)
TDD 2 (downlink
intensive)
Channel BW TDD 6 (uplink
50 MHz intensive)

Max: 29,2 Mbps
Min: 27,5 Mbps
Mean: 28,3
Mbps

Max: 93,0 Mbps
Min: 89,3 Mbps
Mean: 91,8
Mbps

Max: 113 Mbps
Min: 110 Mbps
Mean: 112 Mbps

Max: 136 Mbps
Min: 134 Mbps
Mean: 135 Mbps

Max: 52,1 Mbps
Min: 134 Mbps
Mean: 80,6
Mbps

Max: 57 Mbps
Min: 50,7 Mbps
Mean: 54,9 Mbps

Max: 36,5 Mbps
Min: 33,0 Mbps
Mean: 34,8 Mbps

Max: 28,5 Mbps
Min: 26,6 Mbps
Mean: 27,6,7
Mbps

Max: 16,9 Mbps
Min: 15,5 Mbps
Mean: 16,4 Mbps

Max: 258 Mbps
Min: 244 Mbps
Mean: 231 Mbps

In Figure measurement results are presented on a time scale from left to right, corresponding to TDD
6, TDD 5, TDD 3, and TDD 2 profiles deployed on the RRU using a 20 MHz 5G NR spectrum.

The testing results show that the 5G NR system performance and suitability depend on the channel
bandwidth and the application requirements. For applications that are not bandwidth-intensive, such as
sensor readings and real-time telemetry collection, the system can provide adequate service quality
using 20 MHz of spectrum. However, for applications that are bandwidth-intensive, such as video
streaming and cloud computing, the 5G system needs more spectrum to achieve higher throughput and
lower latency. The results indicate that using 50 MHz of spectrum can increase the uplink throughput
up to 258 Mbps (Figure ), which is a significant improvement compared to 20 MHz of spectrum (uplink
throughput up to 57 Mbps).
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However, this may not be enough to fully utilize the potential of 5G technology used for future smart
ports. Therefore, we recommend using 100 MHz of spectrum or more for the private 5G deployments
to enable more advanced and diverse applications and services for the future smart port use cases.

Measurement results presented on a time scale — 50 MHz of spectrum using uplink intensive TDD profile

4.2.5.8 Availability

We conducted a long-term test to measure the availability of our deployed private 5G system and rMON
5G 10T backend. We selected a timeframe of more than three weeks (from July 5, 2023 to July 28, 2023)
to verify the stability and reliability of the deployed systems under different conditions and scenarios.
We used two metrics to evaluate the availability of the systems:

- The percentage of successful connection tests (RTT) for the deployed private 5G system to
assure not only that system components were operational but also to verify actual connectivity
between industrial 5G gateway and reference endpoint in 5G network.

- Percentage of successful service tests (Web) for the rMON 5G loT backend system to assure
accessibility of the backend services components.

Availakility (2 — [ Successful Tests
Availability () = (T o Teere

The connection tests measured the round-trip time (RTT) of the ICMP packets between the 5G gateway
and the reference point in 5G network, which also reflects the latency and responsiveness of the system.
The service tests (Web) measured the availability and performance of the rMON IoT backend service
endpoint, which also reflects the functionality and quality of service (QoS) of the system. We used gMON
system to automate the test process and to assure periodically. We compared the results with the
expected outcomes and the specifications to assess the availability of the system.



For the private 5G systems (K-KPI110), during the test duration, 222.760 ICMP messages were sent,
and 3 of them were lost (Figure ), accounting for an availability of 99,99865 %.

For the Enhancing 5G IoT backend system (K-KPI4), during the test duration, 21.949 Web services
tests were run (Figure 131), and all of them were successful, accounting for an availability of 100 %.

4.2.5.9 End-to-End Latency

We measured the end-to-end latency (K-KP117) of deployed private 5G system as part of a long-term
test to verify its availability. A timeframe of more than three weeks (from July 5, 2023 to July 28, 2023)
was selected. We used the round-trip time (RTT) measurement to calculate the end-to-end latency,
which is the time it takes for an IP ICMP Echo Request packet to travel from the source host (5G UE)
to the dedicated destination host in the 5G network and back. We performed the measurement using
two different TDD profiles, which define the allocation of uplink and downlink resources for the 5G NR
system. The following TDD profiles were operational:

- TDD 5: This is a balanced profile, where the uplink and downlink TDD slots are equally
distributed. This profile provides a fair trade-off between latency and throughput. The results of
the latency measurement using this profile are shown in Figure 132.

- Dedicated TDD profile: This was a customized profile, where the RAN resources were carefully
planned to minimize the latency on the 5G NR air interface. This profile sacrifices some
throughput to achieve lower end-to-end latency. The results of the latency measurement using
this profile are shown in Table 42.

The results show that the end-to-end latency of private 5G system varies depending on the TDD profile
and the network load. The (mean) latency using the TDD 5 profile was 18,6 ms, while the (mean) latency
using the dedicated profile was 11,8 ms. The minimum latency using the TDD 5 profile was 8,5 ms,
while the minimum latency using the dedicated profile was 7,6 ms.



5G NR RRU TDD 5 (Balanced) Max RTT: 646 ms
Mean RTT: 18,6 ms
n78 Channel BW Min RTT: 8,5 ms
2x2 DL MIMO 20 MHz TDD profile optimised for low Max RTT: 20,7 ms
2x2 UL MIMO latency Mean RTT: 11,8 ms
QAM 256 (up to) Min RTT: 7,6 ms

The results indicate that the dedicated TDD profile can reduce the mean latency compared to the TDD
5 profile, but at the cost of lower throughput. The results also indicate that the latency increases with
the network load, as more packets compete for the same radio resources. The results demonstrate the
flexibility and adaptability of deployed private 5G system to meet different latency requirements and use
cases.

4.3 UCS5: Optical Character Recognition of container markings
and Container Damage Detection

4.3.1 Description and Motivation

In the context of port management, ensuring the traceability of containers emerges as a pivotal factor in
orchestrating the seamless transportation of cargo. This multifaceted endeavour encompasses various
facets, including the meticulous identification of containers and the rigorous examination of their
structural integrity. Given the challenging conditions to which containers are subjected, there is an
inherent risk of damages that could compromise their overall robustness. Consequently, a compulsory
visual inspection becomes imperative not only for the identification of containers but also to ascertain
the containers' soundness and resilience in the face of harsh environmental elements and other potential
stressors.

This visual inspection of cargo containers is essential to maintain the safe and correct transportation of
goods. This process is comprised by the detection of different elements that feature the container: the
BIC code identifier, IMGD markers that could be adhered to the container surface or the different
damages the surface could present (Figure 133). In addition, other parameters related to operational
processes are interesting such as the orientation of the container during the loading or unloading
procedures to and from vessels.
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As previously mentioned in this document, a mother vessel typically requires approximately 3000
stevedore moves (depending on the vessel size) to complete loading operations. Each of these
manoeuvres requires a visual inspection of the containers to ensure that their conditions are suitable for
shipment or loading onto trucks. Like many automation processes, the primary objective of an automatic
visual inspection system is to decrease the time required for these inspections. This reduction in time
not only minimizes the duration the vessel must remain stationary at the port but also eliminates the
necessity for human presence in the loading/unloading area, thereby enhancing the safety of the
process and mitigating associated risks.

4.3.2 Use Case Setup

As analysis must be made for all the faces of the container, the architecture of the use case is comprised
by five cameras as depicted in Fig 883each of one covering one of the faces. However, to cover all the
area from the side of the beam closest to the container two cameras are necessary, so that the whole
container can be acquired.

The quayside crane (QC) is equipped with five wide-angle cameras, continuously capturing 1080p (with
the possibility of reaching 4k) video of vessel loading/unloading operations. The container analysis is
performed in an on-premises Al-assured cloud infrastructure connected via LL Koper 5G to the STS
cameras (Figure 134).

CamA2 CamAl
— i =

CMA CGM
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That architecture is primarily influenced by two different factors. The first factor is the computation
capabilities essential for model inference, demanding a high-performance computer that, with severe
restrictions, must be installed in the facilities due to access and security regulation issues. The second
factor is the available bandwidth. In 5G networks, this enables the transmission of substantial data
volumes necessary for streaming content from five cameras at 1080p resolution.

The server installed in LL Koper features an Intel Xeon Gold 6132 2.6G processor, 128G RAM memory
and NVIDIA Tesla T4 GPU graphic card to accelerate the processing time of the deep learning models
inference. The 5G NSA from Telekom Slovenije was exploited to deliver uplink non-processed 1080p
video streams at the central server for its analysis. Information is later sent to update the information at

the LL Koper cloud.
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The ML visual inspection procedure algorithms (a.k.a. perception instance) are implemented in python
and installed in five different docker containers, see Figure 134, one for each camera. The inner pipeline
of each perception instance is described in Figure 135. And it is comprised of several stages. The
execution flow of each instance varies depending on the elements present in the image.
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The heuristic module is comprised of several Python scripts that continuously check the messages sent
to a messaging broker (Kafka) by the perception instances, as shown in Figure . Once a timeout is
detected (meaning no more messages are being sent for a while), the heuristic module decides whether
a container is being operated or not. It could be a container that just passed by in front of the camera

without stopping, for example.
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The perception instances undertake various tasks (see Figure 137) to gather the required information
for the system:

Visual objects detection: A pre-trained large sized YOLOV5 19 neural network was finetuned on coco
dataset?® with synthetic labelled images?'?2 and later finetuned from here with real images. In the
synthetic images all kind of elements can be found, whereas in the real images only containers, texts
and certain IMDG markers can be identified. During training, the network started with pre-defined
weights and was allowed to change weights on all the layers, this process is usually known as finetuning.
Damages detection: Due to the absence of real images depicting damages, and the resulting subpar
performance when applied to real data, caused by the domain gap between real and synthetic images,
this module has been removed from the pipeline. Only a laboratory analysis has been conducted. A
segmentation model has been used to address this task, and the training was carried out using synthetic
images from the SeaFront dataset.

Text detection: A CRAFT model was used to detect text within the container (once it has been
detected). This module is only used when the prompt detection with YOLOvV5 model does not detect text
but detects container. CRAFT model has proven to be a robust alternative to be considered for text
detection. In this case this model is combined with the previous more generalist detector.

OCR: Another large sized YOLOV5 network was finetuned for 150 epochs on a synthetically generated
and annotated dataset of images with different true type fonts (ttf) and then it was fine-tuned again with
dataset composed of labeled real text crops.

The synthetic dataset was composed by 1297 images, 1034 for training and 264 for validation and the
real dataset consists of 786 images, 686 images for training and 100 images for validation.

Door/No Door classifier: To classify the presence of a door on a container face, a ResNet50 model
has been selected. It was fine-tuned using already pre-trained weights with a dataset composed of
synthetic and real images. The synthetic dataset comprised of 612 door images and 612 no-door
images, as this approach allowed us to easily generate a balanced dataset. The real dataset consisted
of 2275 door images and 3262 no-door images.

19 https://zenodo.org/record/7347926

20 https://cocodataset.org

21 Guillem Delgado, Andoni Cortés, Estibaliz Loyo. Pipeline for Visual Container Inspection Application using Deep Learning. In
Proceedings of the 14th International Joint Conference on Computational Intelligence 1IJCCI 2022, ISBN 978-989-758-611-8,
ISSN 2184-2825, pages 404-411. DOI: 10.5220/0011590900003332

22 Guillem Delgado, Andoni Cortés, Sara Garcia, Estibaliz Loyo, Maialen Berasategi, Nerea Aranjuelo, Methodology for
generating synthetic labeled datasets for visual container inspection, Transportation Research Part E: Logistics and
Transportation Review, Volume 175, 2023, 103174, ISSN 1366-5545, https://doi.org/10.1016/j.tre.2023.103174.
(https:/iwww.sciencedirect.com/science/article/pii/S136655452300162X)


https://doi.org/10.1016/j.tre.2023.103174
https://www.sciencedirect.com/science/article/pii/S136655452300162X

Therefore, UC5 is specifically designed to minimize the inspection time for containers, ultimately leading
to a reduction in economic costs within the logistics chain. This is achieved by leveraging the high-
speed, low-latency communication capabilities of 5G technology to efficiently track and inspect
containers during their presence within the port premises.

4.3.3 List of Key Performance Indicators

Depends on the ML
K-KPI19 model configuration and
the video frame size

Model
accuracy/reliability

Depends on the ML

Model Inference model configuration, the
. K-KPI120 - .
Time video frame size and the

hardware architecture

4.3.4 Methodology and Measurement Tools

The deep learning models employed in this solution have been trained using a combination of real and
synthetic data. The performance of the system is ultimately defined by the quality of the data relevant
to the target scenario. The evaluation has been conducted at two distinct levels: the perception
instance and the overall system.

In response to a shortage of annotated data, the initial strategy involved training and testing algorithms
with synthetic data. Thus, SeaFront Dataset (see Figure 139) was created by combining Blender and
python to generate a diverse and representative dataset.



The dataset was consisted of 7910 images for training and 1978 images for validation. The elements
randomly added to the surface of the container 3D model included BICCODES, ISOCODES, IMDG
stickers or markers, as well as visible damages such as axis deformation, dented damage, perforations,
holes, etc. (see Figure 140). Additionally, other stickers and effects like corrosion, texture, shadows,
external elements, hdr backgrounds, etc. were incorporated. It is worth noting that a dataset of any size
could be created using the developed scripts, provided the required time.

However, not all the items for the different tasks presented equal modelling difficulty; synthetic
containers for container detection proved to be straightforward, followed by text lines and IMDG also for
detection. In contrast, damages for damages detection and identification showcased a wide variety of
different visual perceptions and the generational capacities of the scripts, along with Blender, were not
able to shape all the intricacies.
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To address the domain gap between synthetic and real data, and once the cameras were available to
capture data, a real dataset was created. This real dataset was exploited to fine-tune and to evaluate
perception instances, not the overall system due to desynchronization issues between frames provided
by videos recorded from different cameras.

To evaluate perception instances, 70 different 30-minutes videos were gathered. Out of these, 20 videos
were used to fine-tune the models that were initially trained with synthetic data. The remaining videos
were employed for the evaluation process. Accuracy was calculated by comparing the predictions made
by the pipeline for each sequence with a ground truth text file containing the correct BIC and ISO codes
for the sequence.

The acquired videos include approximately 700 container moves, where each container move consists
of several frames capturing the motion of the crane during the loading/unloading phase. These videos
were recorded in various weather and operational conditions and at different times of the day.

In conclusion, elements with a more straightforward and robust structure (strong intra-class visual
features), such as the container itself and the text blocks, yield higher detection accuracy compared to
elements that generate more diverse features or exhibit greater inter-class variability (damages, IMDGs,
optical character recognition) when applying synthetic trained models to real data.

Due to the absence of IMDG markers they have only been evaluated in the laboratory with synthetic
images, as well as damages. However, in the case of IMDG markers the model used in the detection
stage of the deployed system is prepared to identify them.

As for the binary classification module (door / no-door), a ResNet classification model has been fine-
tuned from the synthetic trained model with a dataset with 2275 door real images and 3262 no door real
images. Evaluations has been made with 520 door images and 680 no-door images (see Figure ).

CAIU | 701327 5
4561

On the other hand, the system's evaluation is carried out manually through an analysis of the predictions
generated by the decision module (see Figure 142). This analysis takes place after the decision module
has received and reviewed the information from the perception instances and has decided whether there
is a container in operation or not.



4.3.5 Results

4.3.5.1 K-KPI19 Model accuracy/reliability

As there are several models involved in the result, a more detailed study was conducted.

The perception instance approach measures the different perception instances' accuracy separately
by processing each video and comparing its output with a list (a text file) that includes containers arriving
on that specific video.

Initially, we conducted tests using synthetic data, achieving satisfactory results in almost all tasks.
However, when applied to real data, the performance significantly dropped, particularly in the damage
segmentation task. Therefore, this document presents only laboratory results for the damages
segmentation part, while the remaining tests were conducted on real images acquired from the cameras
installed in the port.

The damages detection tasks were addressed training a Mask R-CNN model with synthetic data and
testing it with the test part of the synthetic dataset:

Precision 67.5 12.4 45.9 77.8
Recall 71.7 13.2 50.9 77.7

As can be seen in the table 44, the results are modest, and with small objects, the model has difficulties
to segment them correctly. This indicates that more labelled data, particularly with small and medium
damages is likely necessary to improve performance. Additionally, some modifications in the
architecture could also be helpful.

In the case of the IMDG stickers detection task, both analyses, with synthetic and with real images, were
carried out. The detection of IMDG markers is available in the final pipeline, but the number of IMDG
markers in the real dataset is very small (11 markers in the entire 72-video dataset). All IMDG markers
are recognized. However, this is not representative because as mentioned above the number of markers
is small and, moreover, they are of the same type. Therefore, the following table 45 provide the result
of the detection model for the test part of the synthetic per class and globally.

YOLOv5-L 0.754 0.898 0.792 0.734




text 89 87.9 915 73.2
c11 54.5 59.3 65.2 59.0
c1.2 29.3 42.8 28.9 26.0
c13 28.9 49.9 303 27.4
ClL4 30.6 54.7 345 31.3
c2.1 50.4 65.4 53.3 478
c2.2 46.4 71.6 47.7 42.4
c23 87.3 98.7 98.9 87.6
C2.4 80.5 96.5 97.0 87.8
C25 43.1 72.7 46.3 40.7
c3.1 45.7 86.3 478 42.8
C3.2 49.2 83.1 515 45.7
ca1 85.0 97.7 98.8 89.9
ca.2 90.8 95.6 97.4 88.0
c43 89.0 96.6 98.3 89.2
ca4 85.5 97.5 97.9 88.7
C5.1 90.4 97.1 98.4 89.6
C5.2 91.4 96.0 97.6 89.3
C5.3 83.8 97.1 97.9 89.3
C6.1 472 69.0 49.0 44.1
C6.2 65.3 78.3 80.7 72.6
c7.1 78.0 94.6 95.0 85.1
c7.2 471 88.4 52.1 46.4
c73 85.1 88.0 92.6 83.7
C7.4 51.9 915 52.6 46.0
cs.1 88.7 98.4 98.5 89.3
co.1 87.5 97.3 97.3 86.9
containe 14 100 99.5 99.5
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Regarding the binary classification task, which is only applied with cameras C1 and C2 providing
information about the actual orientation of the container during loading or unloading operations, it has
proven to be robust and stable after the fine-tuning process from synthetic data. The ResNet-based
classification model has been tested with an additional test dataset composed of 520 real door images
and 680 real no-door images. The results in the test dataset include 1195 TP (true positives) and 5 FP
(false positives), i.e., the model achieves an accuracy of 0.995.

The remaining tests have been conducted with real data, providing an approximate understanding of
how the overall system will function for the five installed cameras.
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The validation process was conducted as depicted in the graphic above. The perception instance
pipeline was executed for each of the 5 cameras, up to a total of 20 test videos for each camera. These
videos contained a varied number of events, typically ranging from 5 to 15.
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Cameras C1 and C2 appear to be more robust and stable, as expected, with an average precision of
0.72 and average recall of 0.52 for camera C1 and 0.87 and 0.92 for camera C2. However, the lower
values are mainly due to the absence or lack of ISO code detection as in these graphics, we are
considering the detection of both identification numbers, which are not always present.

ISO code characters are occasionally misclassified. This occurs because most of the containers
appearing in the training footage belong to a single type, which is more common and recognized more
accurately during the character recognition stage.

To overcome this issue and achieve better results, we need a more diverse set of real training data.

Another analysis has been conducted using the obtained results, focusing solely on the BIC Code itself.
This provides a more precise perspective on the accuracy of the algorithm, as the absence of the 1ISO
code is not factored into the calculations.



& 56

Precision per Camera (BIC) Recall per Camera (BIC)

. VIV T4V v e VP
AV4

12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

i

)
-
4]

oo

Ci
=} o
N} o
Precision
e o 9 o
R o

o

Sequences Sequences

e camAl camA2 camB camCl  emmmmmcamC2 e caMAL camA2 camB camCl ~ emmm=cam(2

In this second approach (Figure 145), it is notable that Camera C2 achieves the best results with an
average precision of 0.95 and an average recall of 0.91. This is directly linked to the resolution of the
container in the image. For example, Camera B experiences a drop in precision when capturing
sequences at night, as the camera's mechanism for handling low-light situations causes it to lose focus
in the originally targeted area. A similar situation occurs with Camera A1 and Camera A2.

The overall system approach involves measuring the actual output of the system in real-time, directly
from the cameras, with all perception instances operational. The evaluation is conducted directly on the
system's predictions—specifically, on the containers it ultimately detects and their associated BIC and
ISO codes. This assessment, performed manually on various days, encompassed a total of 100 different
operations involving diverse containers and operations.

BIC + ISO Code 100 4 0.961

While the accuracy of individual perception instances may fall below 0.9 depending on the camera, the
combination of analyses from various perception instances has demonstrated greater stability and
comparable accuracy to the best-performing individual instance.

4.3.5.2 K-KPI120 Model Inference Time

Computation time has been measured in three different scenarios: NVIDIA Tesla V100 32 GB, Tesla T4
16GB and CPU. This analysis is conducted in several levels. For each module an inference time is
calculated to determine the time consumed by that concrete task. Afterwards the overall execution time
is also calculated.
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As depicted in the graphs, GPU execution consistently lags CPU execution by an entire order of
magnitude. While GPU execution typically ranges from approximately 50 ms to 800 ms, CPU execution
can extend up to 7 seconds, especially in cases with a high number of detected texts.
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When examining the optimal scenario, it becomes evident that not all modules exhibit equal time
consumption. OCR and Craft execution time is deeply related to the number of text detections obtained
from the detection module, so detection stage is more stable. Certain modules significantly contribute
to the overall execution time, warranting further scrutiny and exploration for potential enhancements.
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4.4 UC5: Monitoring Port Terminal Trucks with Telematics loT
device

4.4.1 Description and Motivation

To have real-time information and visibility about the operational status of port assets, such as yard
trucks, is a key input to optimize operational flow and predict maintenance. The Continental 5G loT
device allows the collection of telemetry data both via the vehicle CAN interface (e.g., fuel consumption)
and from the on-board GNSS module (speed, acceleration, standstill time, etc.). The device can operate
in several 5G NR bands; below are presented the used bands in LL Koper:

Cellular network RF bands
5G NSA (SA) n7,n78




As mentioned before in this document, a mother vessel requires about 3000 stevedore moves
(depending on the vessel size) to complete loading operations. Each of these manoeuvres requires a
visual inspection of the container itself to check if its conditions are correct to be shipped or loaded on
the truck. As in many automation processes, the main goal of an automatic visual inspection system is
to reduce this time and thus, the time the vessel must stay stopped at the port, also removing the need
for human presence at the loading/unloading area increasing the safety of this process minimizing risks.

4.4.2 Use Case Setup

Vehicles operating in the Luka Koper/Port of Koper were equipped with Continental Telemetry loT
devices supporting 5G, that allow the collection of telemetry data (e.g., fuel consumption, speed,
acceleration, standstill time etc.).



These loT devices transmit collected data in real-time, using the 5G NSA network in LL Koper, to a
backend present in the Koper IT infrastructure. The overall architecture of the system is defined below:

—
CAN p—
4—| Koper IT backend
5G — ]
p— ﬁ = — System user
c ANl App DB

Terberg trucks

0T devices are connected to the vehicle CAN network via an inductive connection. The IoT devices
read and interpret all the messages on the CAN network, filtering out only the relevant messages, which
it then stores internally. Depending on the frequency of the messages, some data is averaged out before
being sent (e.g. vehicle speed). The collected data is packaged and sent every second via MQTT to the
backend.



& 56

The backend consists of 2 servers:

e Application server: collects data via MQTT, interprets data and calculates KPIs, web server for
application used by end user
e Database server: stores collected and calculated data

Collected data is organized into trips, on which KPIs are calculated. Trips are defined as a series of
unbroken operations (e.g. container pickup, contained delivery) performed by a single vehicle within the
port area. Once the trips are identified, the application server automatically calculates relevant KPIs and
stores them in the database.

A web application developed in Python and running on top of NGINX allows the end users to visualize
the collected and calculated data.

Trip(s): ‘ [351940280065592] Trip: 4833 | 06.10.2023 15:04:52 - 06.10.2023 22:30:20 V‘

Fuel Rate Color Legend
W 0.00- 3.90

W 3.90-7.80
7.80-11.70

11.70 -
15.60 -
19.50 -
23.40 -
27.30 -
31.20 -
35.10 -

15.60
19.50
23.40
27.30
31.20
35.10
39.00

=
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4.4.3 List of Key Performance Indicators

The presented KPIs were collected from the operational port trucks. Due to the sensitivity and strict
confidentiality of the port operational data, the KPIs with IDs K-KPI25 and K-KP128 were removed from
all public 5G-LOGINNOV deliverables and reports and are only available to the European Commission
and reviewers upon request.

Time Trucks Time spent with engine

Parked in the Area K-KPI25 stopped, over the given
period
Average Speed K-KPI26 Average speed for a trip
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Truck Average acceleration, in
Acceleration and K-KPI127 m/s?, for a trip
deceleration
Truck Stand Still K-KPI28 Time spent in idle, for a
Time trip
Fuel Average fuel

Consumption (in
operation and
standstill)

K-KPI29 consumption, for a trip

4.4.4 Methodology and Measurement Tools

The deployed web application was used for both collection of raw data, as well as trip identification and
calculation of related KPlIs.

Device ID(s): Start Date:
293413030395926 - 28 Oct 2023
351940280065592
351940280066111 £nd Date:
351940280066236 v
27 Nov 2023
Show | 10 | entries Search:
Vehicle speed Total fuel used Fuel rate
Device ID Date (km/h) Latitude Longitude [(B] (L/h) Gear RPM
351940280065592 28.10.2023 0 4555580137  13.74547548 90655.5 2.35 1 703.875
01:00:00
351940280065592 28.10.2023 0 4555580135  13.74547545 90655.5 2.36 1 702,750
01:00:01
351940280065592 28.10.2023 0 45.55580135 13.74547543 90655.5 2.37 1 702.250
01:00:02
351940280065592 28.10.2023 0O 45.555801733  13.74547539 90655.5 2.37 1 704.750

01:00:03
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Device ID(s): Start Date:
293413030395926 - 28 Oct 2023
351940280065592 '
351940280066111 End Date:
351940280066236 v
27 Nov 2023
Trip(s): ‘[351940280065592] Trip: 5434 | 28.10.2023 01:01:14 - 28.10.2023 02:44:30 A

Ankaran / Ancarana (naselje]

X
1 ZN
RiZana V'.!?&

Ankaran / Ancarano Ankaran { Ancarano e aanc (1 “

s Randicia
grupic (RG]

Bertokl ABertatehitnase] ]

Fuel Rate Color Legend
W 0.00-403

B 403 - 206 ?._:-—-—-——— ._.—n?

8.06 - 12.09 m——————

12.09 - 16.12 CassS
16.12 - 20.15

20,15 - 24,18

24.18 - 28.21 Capodistria (naselje)

28.21-32.24

32.24 - 36.27

36.27 - 40.30

On average, each vehicle performed approx. 150 trips per month. The calculated trip KPIs were then
used to determine the overall KPIs for Living Lab Koper; the same data can be used to better understand
differences between the vehicles, as well as allowing correlation with other information (e.g.,
temperature), that could further allow the Koper port to improve logistics operations within the port area.

Device ID(s):

293413030395926

351940280065592 '

351940280066111
351940280066236

Show| 10 ~|entries Search:

Standstill Operating Operating Average 1

Trip Start End Distance Standstill consumption Operating consumption consumption speed '

Device ID D date date (km) time (h) (L/h) time (h) (L/h) (L/100km) (km/h) {

351940280065592 5285 24102023 24.10.2023 5.136 2425 47.221 4.240 2]
20:15:23 21:29:13

351940280065592 5286 24.10.2023  25.10.2023  15.165 6.406 42,241 4.179 3
22:06:14 01:01:10

351940280065592 5321 25.10.2023 25.10.2023 2.018 1.490 73.836 2.484 2
01:01:11 01:49:51
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4.4.5 Results

4.4.5.1 K-KPI25 Time trucks parked

While this information is not directly connected by the IoT devices, the lack of transmitted information
will represent periods where the 10T device is powered off and, thus, the vehicle is parked (i.e. vehicle
ignition is off).

Given this, we can simply calculate the time each vehicle is parked within a given amount of time. While

some variation is visible between the different vehicles, the values are relatively consistent, hovering at
an average of [} spent parked.

351940280065592

[ N 100.00
351940280066111 [ ] ] 100.00
351940280066236 [ ] ] 100.00
351940280066434 [ ] ] 100.00

4.4.5.2 K-KPI26 Average speed

Average speed is determined based on the raw data collected form the vehicles. The raw speed is
obtained in 2 different manners:

- Directly from the vehicle, based on data collected from the CAN communication bus
- Through GNSS data collected internally by the 10T device itself

The speeds collected in these 2 manners are correlated, in order to obtain the most reliable resulting
data.

351940280065592 5.6 43
351940280066111 5.55 39
351940280066236 7.39 41
351940280066434 5.98 39
351940280067374 4.6 29

As can be clearly seen an outlier can be identified rather easily: the vehicle on which 10T device
351940280066236 is installed in has both a higher average speed, as well as a higher max speed than
any other device.
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Looking at the max and average speed for a single vehicle, for over a hundred trips, you can see that,
while there are variations between trips (mainly due to significant differences in operation time), the
trendline for max speed and average speed are stable:

Max and Average speed

— Fverage_speed

— X _speed

......... Expon. (max_speed)

--------- Expon. (average_speed)

31404

wwwwwww
nnnnnnn

= o oo Qo aq
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

4.4.5.3 K-KPI127 Truck acceleration and deceleration

Maximum acceleration and deceleration are important in determining overall driving behaviour; higher
values correlate should typically correlate with higher fuel consumption, thus leading to higher operating
costs. In addition, they can also increase the wear on the vehicles. Vehicle acceleration and deceleration
are calculated based on the vehicle speed obtained by the 10T devices.

351940280065592 13.42 -13.23
351940280066111 9.4 -9.61
351940280066236 9.79 -13.32
351940280066434 10.01 -11.48
351940280067374 2.12 -4.25

4.45.4 K-KPI28 Standstill time

Standstill time represents the part of a trip in which the vehicle is stationary (typically while containers
are loaded and unloaded). Standstill time is important, as the vehicle has its engine on during this time,
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thus still consuming fuel. The aim is to reduce the standstill time as much as possible, to both improve
port operations, as well as to reduce costs related to fuel.

While there is significant variation between vehicle on individual days, the average standstill time for
trips over a one-month period is uniform:

351940280065592
351940280066111
351940280066236

351940280066434

351940280067374

4.4.5.5 K-KPI29 Fuel consumption

The most meaningful KPI from a financial perspective is fuel consumption, since that directly correlates
to expenditure. Since overall standstill time can influence the result of fuel consumption, the KPI was
broken down into 2 distinct parts:

- Fuel consumption in standstill. This value should be fairly stable for a given vehicle given similar
conditions (e.g. temperature)

- Fuel consumption in operation. This value is strongly related to driving patterns, such as
acceleration and braking, maximum speed, as well as trip length

Thus, we have the following results for the fuel consumption in standstill:

351940280065592 3,46
351940280066111 3,51
351940280066236 1,4
351940280066434 2,66

Plotted on a graph, the standstill fuel consumption for one of the vehicles looks like this:
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Figure 158: LL Koper - UC5 - Example of standstill fuel consumption.

As mentioned previously, fuel consumption in operation is dependent on several factors, including trip

length. For a given vehicle the fuel consumption plotted on a graph is presented below:
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Figure 159: LL Koper - UC5 - Fuel consumption in operation (L/h).
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There is a strong variation in fuel consumption, if measured in L/h (default value returned by the vehicle).
This variation can be explained by higher speeds or when the engine is under heavier load (such as
when the vehicle is transporting a container vs. driving without one). However, the fuel consumption in
L/100km is fairly stable within a given period of time.

The average fuel consumption, however, is fairly stable and consistent between the different vehicle,
with a single vehicle being an outlier (same one with a significantly lower standstill fuel consumption):

351940280065592 6,38
351940280066111 6,79
351940280066236 3,00
351940280066434 6,22

4.5 UCG6: Mission Critical Communications in Ports
4.5.1 Description and Motivation

The logistics within a port extend beyond tracking containers, encompassing crucial elements for safer
and more reliable operations. Security and vehicular capacity control are integral aspects contributing
to enhanced operational efficiency. Security measures focus on securing restricted areas inaccessible
to pedestrians, while managing vehicular capacity aims to prevent congestion and ensure smooth
transit.

Within Use Case 6, various activities related to port security operations were introduced to LL Koper.
Real-time video surveillance was implemented using 5G-enabled body-worn cameras carried by
security personnel, supporting their routine and mission-critical tasks while enhancing personnel
security. Additionally, UHD video surveillance cameras with night vision capabilities, strategically
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positioned and connected to the 5G network, monitored specific port areas, such as railway entrances,
to bolster security services. A drone-based system was deployed for ad-hoc video surveillance, utilizing
the 5G network to transmit real-time video streams to the port Security Operation Centre.

Complementing video-based security operations, an automated detection system employing Machine
Learning (ML) and Atrtificial Intelligence (Al) for analysing video feeds was implemented. This system
identifies and tracks objects, vehicles, and personnel movement in designated port areas. As part of Al-
assisted use case, we aim to achieve two objectives. Firstly, we seek to detect individuals in restricted
areas. Secondly, our goal is to identify and count vehicles in the port's access zones. This information
will enable the port to have real-time visibility into the presence of vehicles within its premises.

Furthermore, a private security operations management and support system, equipped with dedicated
applications, facilitated comprehensive security operations, including monitoring personnel/team status
and positioning.

4.5.2 Use Case Setup

In UCB6, the foundational communication infrastructure leverages 5G technologies deployed in UC1,
such as UHD cameras on light towers and assured connectivity through an industrial 5G Gateway (see
Figure 83). This serves as the baseline communication enabler, ensuring the reliability and resilience of
the comprehensive real-time video surveillance system for mission-critical requirements. The system
utilizes both commercial (NSA) and private 5G network services (SA).

4.5.2.1 Drone and body worn camera -based video streaming

We established real-time video surveillance by deploying 5G-enabled body-worn cameras by security
personnel. This initiative aimed to enhance both their regular and mission-critical operations while
providing an additional layer of personnel security (e.g., emergency button on worn camera).
Simultaneously, drone-based surveillance was implemented to offer extended ad-hoc video surveillance
support, leveraging the 5G network to seamlessly transmit video streams in real time to the port Security
Operation Centre.

The initial phase involved installing and integrating various types and form factors of video sources,
including body- and helmet-worn security camera extensions for smartphones and drone-based camera
system (Figure 161). These sources were connected to the available 5G capabilities within LL Koper.
Following a predefined security scenario, captured video streams from these deployed sources were
transmitted in real-time across the established 5G system. Due to the unavailability of streaming devices
with technology supporting 5G NSA or SA modes, a OnePlus 9 smartphone was utilized to connect
wearable and drone-based systems and to ensure connectivity to the deployed NSA and private 5G SA
networks. While the solutions were not operational grade, we were still able to assess the proposed
concept of introducing real-time streaming over the 5G systems in the port environment. Subsequently,
these streams were made available to the security and operational support teams within LL Koper.

In the subsequent phase, professional body-worn cameras were integrated into the LL Koper
environment, and a dedicated cloud-based application was developed by ININ to consolidate several
video streams from various sources onto a single surveillance system. This application combined
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streams from wearables, drones, and other cameras (e.g., deployed UHD cameras in the port).
Additionally, GIS-supported positioning of the video sources was ensured, and triggered alarms by
security personnel were displayed on a map showcasing emergency situations encountered in the port
(Figure 162).

Although we were waiting to purchase the professional cameras until the last stage of the 5G-
LOGINNOV project, 5G technology was still not available in these market niches; thus, we were only
able to directly utilize 4G capabilities of the deployed NSA system (LTE Radio only). For connectivity to
the 5G NSA and private 5G SA systems, we again used smartphones with 5G support to connect
professional cameras via Wi-Fi to deployed 5G networks in LL Koper. These limitations are solely due
to the current limitations in the 5G chipset value chain, and we believe that as Private 5G SA systems
expand globally, manufacturers will also integrate appropriate 5G NR support to the professional
wearable devices.

nternet o
Security Center SGLOGINNOV
NSTITUTE i ®

The figures that follow showcase real-time video streaming testing with professional body-worn cameras
(Figure ) and drone-based surveillance (Figure 163) conducted in LL Koper.

1
it
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4.5.2.2 People and vehicle detections in a controlled area

Another objective of UC6 was to automate the detection of intruders within a pre-defined restricted area
using AlI/ML methods. To achieve this, Vicomtech developed an Al-assured visual detection system.
The system comprises two different UHD and 5G-connected cameras installed on poles at varying
heights, both focused on the same region but from different perspectives.

Each camera was configured with a designated region of interest (ROI) where detection was conducted.
Whenever an intrusion was detected within the ROI, an alarm was activated to alert Luka’s personnel
and prevent unauthorized access.

The second system is designed to manage the number of vehicles circulating within the port
installations. It is installed on a gantry, typically positioned at the entrance to the port.
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This system classifies vehicles in 5 different classes { vehicle, motorbike, bus, truck and towtruck }.
However, it's worth noting that no motorbikes have been observed in the videos used for evaluation.
This system tracks both vehicle entrances and exits at the defined the area, marked by a pre-configured
line.

Y towtruck 0.63

truck 0.86

4.5.3 List of Key Performance Indicators

As presented in the motivation section of UC6, we conducted two concurrent demonstrators: “Drone
and body-worn camera-based video streaming” and “People and vehicle detections in a controlled area”.
The “Drone and body-worn camera-based video streaming” demonstrator was limited to functional and
system usefulness verification in LL Koper, and the security operational procedures used during the
demonstrator testing are for the port security strictly confidential.

Therefore, results from the following chapter onward are relevant only to the activities related to the
“People and vehicle detections in a controlled area” demonstrator.
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Model accuracy/reliability Depends on the ML model configuration

K-KPI21

(People detection) and the video frame size
Depends on the ML model
Model Inference Time K-KP22 configuration, the video frame size and
the hardware architecture
Model accuracy/reliability Depends on the ML model configuration
. . K-KPI23 : )
(vehicle detection) and the video frame size
Depends on the ML model
Model Inference configuration, the video frame size and
. K-KPI124 .
Time the hardware architecture

4.5.4 Methodology and Measurement Tools

To tackle this assessment stage, several models were studied for these systems, including YOLO-NAS,
YOLOR, YOLOvV5 and YOLOVS8. After empirical tests with the COCO dataset, YOLO-NAS and YOLOR
performed worse than the Ultralytics?® models. Furthermore, analysing the results achieved with these
initial weights, YOLOvV8 was better at detecting people than YOLOv5. Therefore, the human detector
system uses the medium version of YOLOV8, and the vehicle detection and counting system uses the
large version of YOLOV5, which is lighter than YOLOv8 and good enough.

To adapt the models to these problems, two different datasets were designed, one for each scenario.
The images were obtained from two different cameras, in the case of the people detection system, with
variability in the weather conditions and the moment of the day in which they were taken. The final
datasets are summarised in the table below.

People detection Yolov8 medium 87 imgs 70 imgs 17 imgs Person
Vehicle
Vehicle Motorbike
detection and Yolov5 large 4K imgs 3K imgs 800 imgs Bus
counting Truck
Tow truck

Despite the lack of a large human dataset, the pretrained models allow the application to achieve
acceptable results with this amount of data. A medium YOLOv8 model pretrained with the COCO
dataset has been used to deal with the shortage of available data and its subsequent annotation during
the project. The model was trained using fine-tuning to boost person detection task in this domain. This
technique uses as initial step weights pre-trained in another domain and lets the model to modify all the

Z https://github.com/ultralytics/yolovs
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weights to find a better model, modelling its knowledge over the previous one to improve the detection
of the pretrained model.

4.5.5 Results
4.5.5.1 K-KPI21 Model accuracy/reliability

The evaluation media of the human detection system consists of different videos of people walking
within a restricted area. This is a set of 11.6K images taken from 32 different videos from both cameras
at different times and weather conditions. Considering that all the frames show people inside the
restricted area, if the system triggers the alarm, it is counted as a True Positive or success; if not, it is
counted as a False Negative or failure. The graph below shows the behaviour of the system over time.

K-KPI21 - Pedestrian model accuracy

Precision

The graph illustrates the evolution of the system’s precision over time. Although it initially fails to detect
people in the restricted area -the first frames-, it soon enhances and converges to a value of
approximately 85% precision. The system demonstrates sufficient robustness over time to be
considered a successful result.

To improve this value, the size of the dataset and the complexity of the model used could be increased.
Firstly, adding more images to the dataset could bring more variability to the dataset, making the model
more generic and more adaptable to new situations.

Secondly, increasing the complexity of the model may have a direct impact on the precision of the
system, as its representation capability gets higher. However, the inference time may increase, for the
same reason. In this case, we are working with YOLOVS in its medium version.

4.5.5.2 K-KPI123 Model accuracy/reliability

The vehicle detection and counting system has been evaluated with 40K images taken from 73 30-
minutes videos. The figure below shows the representation of each label in the ground truth. Neither in
the training nor in the evaluation of the system was found any frame with a motorbike. For this reason,
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there are no objects labelled as motorbikes in the dataset and this class is not considered for the
calculation of the K-KPI123.

Label representation
80

70
60
50

40

Obhjects

30
20
10

. ]

m Vehicle Motorbike Truck Tow truck mBus

Table 58 summarizes the results obtained after system analysis. It indicates the True Positives (TP),
False Positives (FP) and False Negatives (FN) for each of the classes present in the dataset. With that
information, the precision, recall and F1 score have been calculated for every class.

67 2 7 0.971 0.905 0.937

0 0 0 --- --- ---

68 8 2 0.894 0.971 0.931

6 1 1 0.857 0.857 0.857

1 0 7 1.0 0.125 0.222
142 11 17

The dataset used is highly imbalanced, and the model performs better on common classes such as
vehicles, trucks, and tow trucks, compared to buses and motorbikes, the latter being non-existent.

Starting from the fact that it is a highly unbalanced dataset, the model adapts better to the more common
vehicles than to the rarer ones. In the case of buses, although the precision is 100%, the majority are
labelled as trucks. This produces a very small recall. However, it is observed that the selected model
has sufficient representational capacity to address the issue, although it is true that adding more images
of less frequent classes would be necessary to balance the system.

To know the general metrics of the system, the macro and micro measurements are being used. The
macro-averaged score is computing using the arithmetic mean, without weights, of all the per-class
scores. Whereas micro averaging computes a global average score by counting the sums of the True
Positives (TP), False Negatives (FN) and False Positives (FP). Those are the values represented on
the Table 59.



0.931 0.715 0.737

0.928 0.893 0.910

As seen in the table, when calculating metrics using micro-averaging, the imbalance error is somewhat
diluted. In macro-averaging, however, equal importance is given to all classes, even though in the port,
the presence of motorcycles and buses is much lower than that of trucks or vehicles. Therefore, using
micro-averaging achieves a superior result to macro-averaging.

45.5.3 K-KPI22 — K-KPI124 Model Inference Time

For the inference time calculation, an initial study has been conducted using the YOLOv8m model on
various hardware platforms: with different GPUs and CPUs to verify the relative time differences
between the systems.

YOLOv8 (medium) - Model Inference
300.00
-— 250.00
200.00
150.00 l !l L . | il L f

50.00

Inference time

1 101 201 301 401 501 601 701 801 901 100111011201 13011401 150116011701
Timestamp (frame)

—— CPU - HAL3000 CPU - LUKA GPU - HAL3000 GPU - LUKA

As expected, the execution on the GPU NVIDIA Tesla V100-SXM2-32GB of a local server (referred to
as HAL) yielded the best results, with the average time being orders of magnitude lower than the same
inference on the CPU. Specifically, we are talking about approximately 3~4 times faster (from 100 ms
in CPU to 30 in GPU).

A second experiment was conducted on the target server to obtain the KPIs. The inference time was
obtained for two different models: YOLOv8m for person detection, corresponding to K-KPI22, and
YOLOVS5I for vehicle detection and counting, corresponding to K-KP124.

To evaluate the model inference time, it has been used a dataset of 1.5K images.
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38.929 0.883

18.922 0.477

The average execution time is 38 ms for K-KPI22 and 19 ms for K-KPI24. This difference is due to the
different complexity of the two models and to an additional post-processing applied in the case of the
human detector that checks whether a person is within an area or not using an image mask.

Peaks in the image are due to system overloads and are not significant as they do not depend on the
model. To address them, system resources could be increased, or model resources could be reduced
by pruning techniques or by reducing its complexity.

To decrease the execution time different methods could be applied, such as applying optimisation
techniques to the model architecture (pruning, quantization...) and the usage of libraries focused on
optimising performance on GPUs (tensorRT, ONNX).

For the cross-pilot activities the three Living labs collaborated in pairs.

5.1 Athens and Koper

Between Athens and Koper three activities took place. First, as described in Section 2.1.4 (with related
images and measurements), the Athens site exploited the Quality Monitoring Suite (QMON) provided by
ININ, for detailed monitoring of 5G network KPIs at PCT’s private 5G-NSA network. Particularly, various
drive tests exploiting qMON have been performed within the port premises (along the normal routes
followed by yard trucks) as well as stationary (non-mobile) tests, providing a detailed view on the network
capabilities and limitations within the port of Piraeus, for the support of Athens use cases. In this view
we provide a holistic example of common frameworks as a unified KPI system across different ports
enabling potential standardization in performance measurement. This makes it easier to compare
performance metrics across different locations and facilities, facilitating better analysis and
benchmarking. When multiple ports adopt similar KPI systems, it can drive industry-wide improvements.
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It encourages a more collaborative approach where industry stakeholders can work together
(particularly, PCT and Luka Koper/Port of Koper, Vodafone, Telekom Slovenia and ININ) to address
common challenges and enhance overall efficiency and performance of their network deployments and
infrastructure. Table 61 illustrates gMON 5G test automation system used in Athens case. For more
details please see Section 2.1.4.
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Second, Athens UC3 “6G&Al-enabled collision warning system” (evaluated in Section 2.2) has been
tested also with a LL Koper Terberg yard-truck, including a 5G industrial gateway provided by ININ to
facilitate cellular connectivity (see Section 4.2) with the LL Koper edge-computing infrastructure hosting
the Al-assisted collision warning service provided by ICCS, over the 5G network of Telekom Slovenia.
The use case was demonstrated live on the 5G-LOGINNOV’s final event at Koper, in the 7t of
November 2023. The demonstrations involved pre-recorded videos of the use case in Athens LL (left)
and live demonstration at Koper (right), Figure 173 and Figure 174, as well as the preparation of the
Koper edge-computing infrastructure (k8s compute nodes) hosting the Al service for collision avoidance
and Terberg truck 99 (including 4K camera and 5G tablet Ul) for UC3 live demonstration (Table 62) and
evaluation.



Qualitatively, the same conclusions were witnessed in LL Koper as in LL Athens, i.e., the two setups
(sound alerts and inferenced video stream on the 5G downlink) should be used in conjunction for mission
critical services (with stringent latency constraints) such as collision avoidance.

Third, Athens UC5 “5G&Al-enabled container seal detection” (evaluated in Section 2.4) was also ported
in LL Koper exploiting the Quay side crane at Koper facilitating container load/unload operations, the
4K camera installed on the crane for crane operations monitoring, and the public 5G-NSA network of
Telekom Slovenia for transmitting the video to the edge-computing datacentre, were the Al service
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resides for container seal detection. Table 63 illustrate footage from the Live demonstration event were
the use cases were showcased live at the participants.

The major take-away for this use case is the following. The Al service, was trained solely with data from
Piraeus Port. The resulting ML algorithm was deployed also in Koper without further training and/or fine
tuning of the model on data from Koper, demonstrating similar performance. This indicates that the
designed ML algorithm is able to generalize regardless of the background of the images it receives as

input, and thus has the potential to be easily deployed in different ports and varying respective
background settings.
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5.2 Koper and Hamburg

To verify the interoperability of the developed solution between Hamburg and Koper living labs, LCMM
and GLOSA-related use cases were implemented and verified in the Port of Koper (Table 64).

IR A . -

As demonstrated at the final event in LL Koper, Hamburg KPI achievements, can easily be scaled up
and transferred to Port of Athens and Luka Koper. Feasibility studies took place in 2023, Table 65 was
recorded by Hamburg’s project team in Luka Koper and uses LCMM and GLOSA in an exemplary
manner.

Table 65 depict footage from the vehicles used in the Koper at the cross-pilot demonstration.

5.3 Athens and Hamburg

More details about the Hamburg monitoring system (LCMM) at PCT yard trucks (consent involving the
participating drivers was necessary) data will be presented at the final review meeting of 5G-
LOGINNOV, on the 15" of February, 2024.
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This report evaluated the performance of 5G technology and the performance of the identified 5G-
LOGINNOQV use cases via the trial activities of the project, in real operating Port conditions within and
outside the Port environment. Various network deployment options were tested and benchmarked,
particularly private 5G-NSA network at the port of Piraeus provided by Vodafone, public 5G-NSA
network at Hamburg living lab, and two network deployments at Koper, i.e., public 5G-NSA by Telekom
Slovenia and private 5G SA from ININ.

A portfolio of 5G technologies and use case enablers were tested, including NFV-MANO and MEC,
slicing, precise positioning, far-edge and cloud computing, Al-assisted video/data analytics, 5G-I10T, next
generation traffic management systems, Cooperative, Connected and Automated Mobility (CCAM)
systems. The main focus and achieved goals for the project via exploiting 5G technological blocks was
on applications tailored to safety and security, as well as on services that improve the efficiency of daily
port operations (reduce costs, improve the utilization of human resources and automate logistics
services via Al analytics), and on the improvement of the environmental footprint of port operations
inside and outside the Port premises. Particular emphasis has been given in the cross-pilot activities to
make sure that the lessons leaned and developed use cases and platforms can be easily transferred to
other EU ports and logistics actors.

As highlighted by the activities of the 5G-LOGINNOV project, 5G technology has the potential to
significantly enhance the functionality and efficiency of critical infrastructures, such as Ports, and has to
become an integral of their evolution, towards a more sustainable logistics supply chain for the EU.
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