

Athens Living Lab Ideathon Edge Computing

Institute of Communication and Computer Systems (ICCS)

10 October 2022

Dr. Konstantinos V. Katsaros

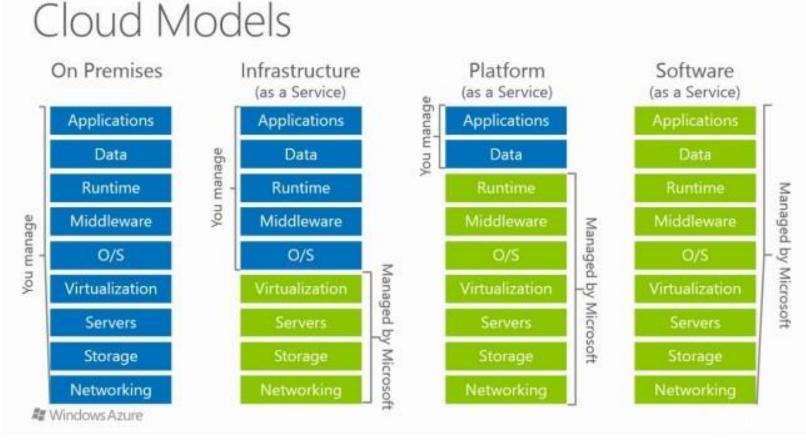
Head of Intelligent Networks & Services ISENSE Group / ICCS

Outline

- Edge Computing in a nutshell
- Where is the Edge?
- Use Cases
- A Functional Perspective
 - Overview of Edge Computing internals
 - Developing and Deploying Edge Computing Applications
- Key Technologies
 - Existing Tools and Frameworks
- Challenges

Disclaimer

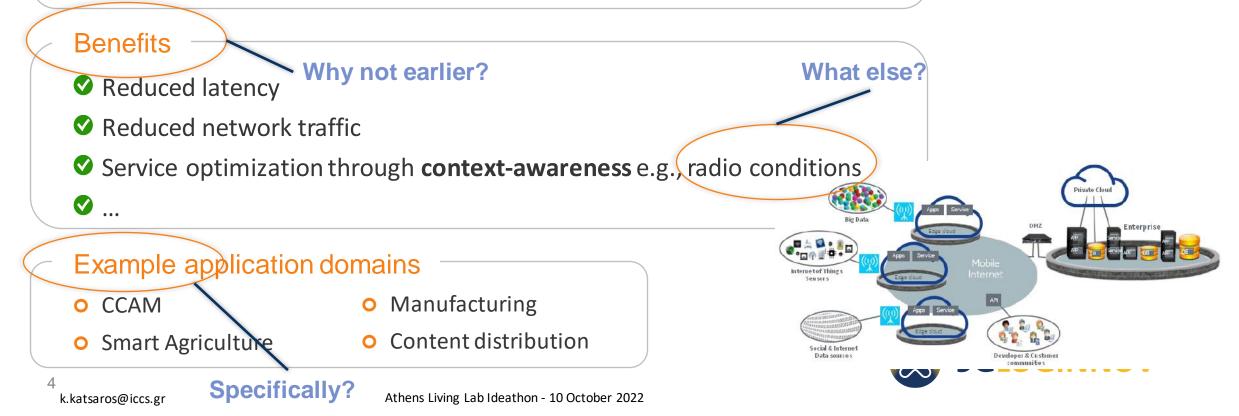
Edge computing is a very large area, impossible to sufficiently cover here!



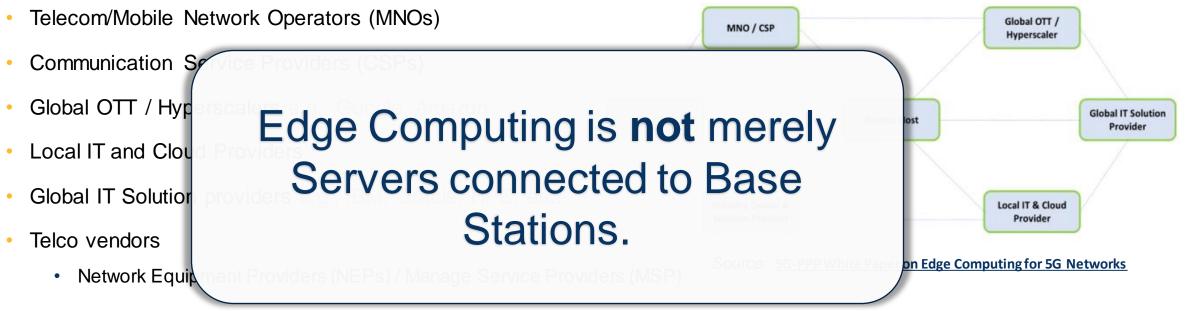
The Basics: Cloud Computing

Economies of scale

Elasticity

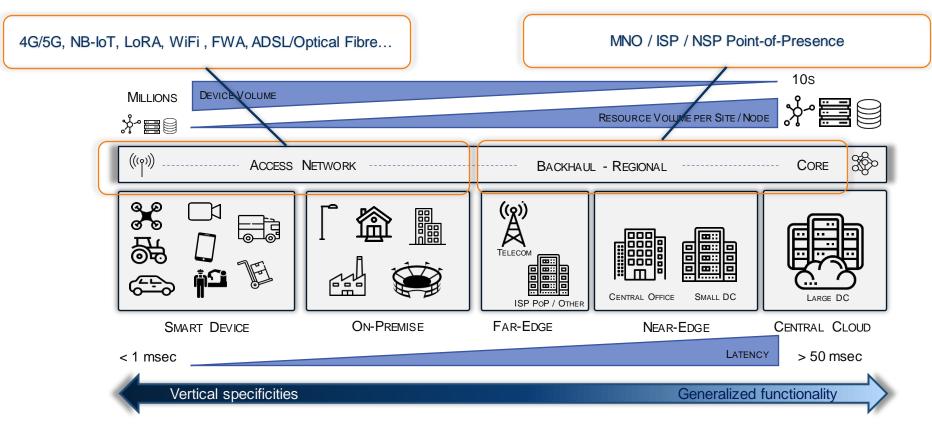


Edge Computing in a Nutshell


- Enable cloud computing capabilities at the edge of the network
- Vertical oriented
- Close integration with Radio Access Network (RAN)

Where is that exactly?

Where is the Edge?


Key players in Edge Computing

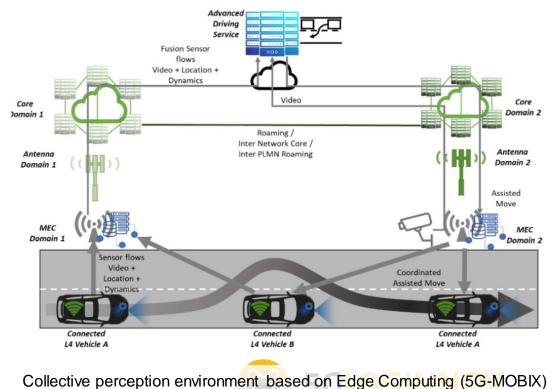
- Global industry device & solution providers e.g. Siemens, ABB, etc.
- Neutral Host (provider) e.g., Barcelona City nodes

Where is the Edge?

The Compute Continuum

Use Cases

Use Cases Automotive: Collective Environment Perception



- Real-time exchange of vehicle sensor information
- Perception beyond local sensor range

• Aggregation, fusion, delivery of information

Applications

- Collision avoidance
- > Automated manoeuvres
 - e.g., overtaking and lane changing
- HD Maps

Use Cases Manufacturing

Edge Computing functionality / features

- Real-time collection of component sensor data
- Real-time video analytics
- Closing the control loop: decision making & actuation
- Privacy/Security: non-public deployments

Applications

- Factory automation e.g., robotics w/ computer vision
- HMIs AR/VR Digital Twins
- HD Maps

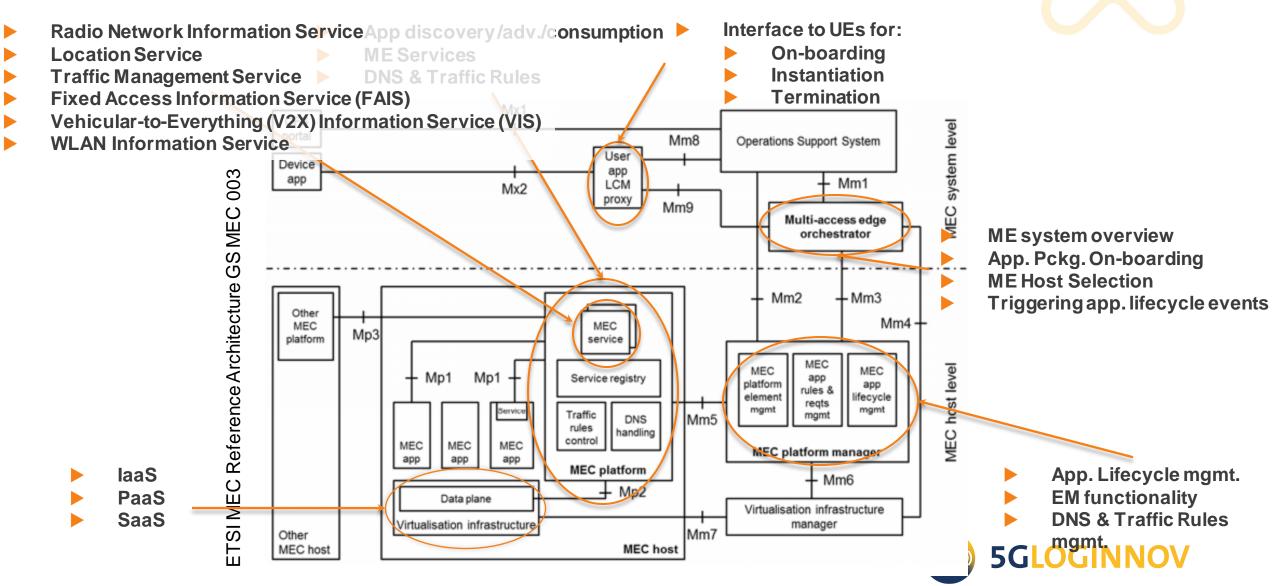
Use Cases Precision Agriculture

Edge Computing functionality / features

- Real-time video analytics
- Closing the control loop: decision making & actuation
- AR interfaces

Applications

- Precision Spraying
- >Remote Disease Diagnosis
- Drone Based Monitoring



A Functional Perspective

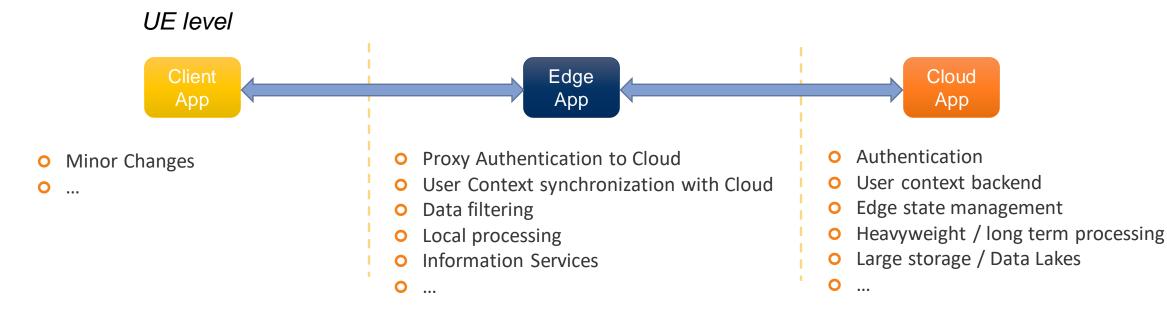
Overview of Edge Computing internals

Athens Living Lab Ideathon - 10 October 2022

Context-awareness: ETSI MEC Information Services

Radio Network Information Service	Location Information Service	Fixed Access Information Service (FAIS)	Vehicular-to- Everything (V2X) Information Service (VIS)	WLAN Information Service
 Radio Access Bearer PLMN e.g., cell changes L2 Measurements 	 Specific UE location Area / AP UE locations Distance between Ues and/or specific point Filtering of the above 	 Device Cable line Optical network 	 List of authorized PC5 UEs Communication with other ISs Predictive QoS notifications 	 List of APs WLAN capabilities BSS Load Station Data Rates

(*) This is a subset of the overall services


Offered by an ETSI MEC Platform, but other Services can be offered by Third Parties as well

Developing Applications for the Edge

• Fit with: Microservices - Serverless architectures – Service Meshes

Functional split for single 3-tier environment: UE, Edge Node, Cloud See also: <u>ETSI White Paper No. 20 Developing Software for Multi-Access Edge Computing, February 2019</u>

Deploying Applications at the Edge

1. Packaging and on-boarding

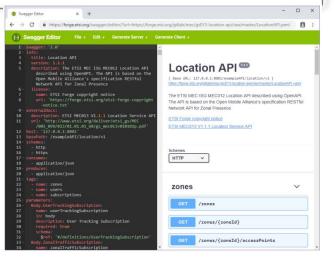
- Prepare and sign VM/container
- Deliver (upload) to OSS $\rightarrow \dots \rightarrow VIM e.g.$, Kubernetes
- Traffic/DNS rules, Use of Information Services

2. Instantiation & Operation

- UE or developer triggered
- Platform issues LCM requests
- Traffic/DNS, Information services configuration

3. UE – Edge communication

- o Direct IP or DNS resolution
- Optional Edge App Mgmt functionality



4. Usage of Edge Services

- Information Services or 3rd party services
- RESTfull APIs

- ETSI White Paper No. 20 Developing Software for Multi-Access Edge
 Computing Enhrung: 2010
- Computing, February 2019
- ETSI MEC Sandbox

5GLOGINNOV

Key Technologies

Key Technologies **Overview**

Resource Virtualization

- Virtual Machines
- Containers
- Lightweight
 Virtualization

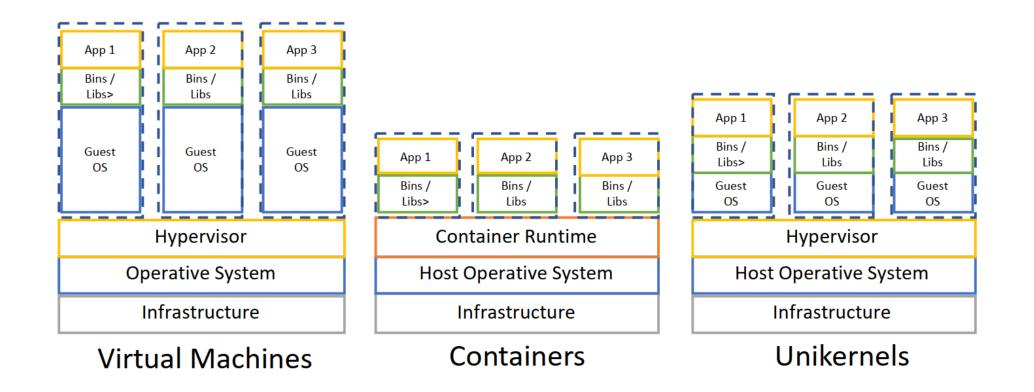
Orchestration

- Kubernetes
- OSM
- ONAP
- Other

Network Programmability

- SDN for Edge
 Computing
- Data plane Programmability

Acceleration


- FPGAs
- GPUs

Source: 5G-PPP White Paper on Edge Computing for 5G Networks

Key Technologies Resource Virtualization

Key Technologies Orchestration

Generic Orchestration

- VM/Container Life-Cycle Management (LCM)
 - Instantiation, configuration, auto-scaling / load balancing, ...
- Network Service LCM
 - Connectivity, traffic management, ...

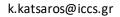
ľ.

Edge Specificities

- Resource limitations
 - Platform footprint
 - Job prioritization
- Multi-node operation
 - State management, telemetry
- Mobility management
 - Session handover support: state-full / state-less applications
- Information services
 - Data collection/aggregation and exposure
- Service discovery & LCM implications

Key Technologies Orchestration: Platforms & Tools

Athens Living Lab Ideathon - 10 October 2022


ONF 4G/5G Edge Platform; Focus on connectivity/slicing; Integration with SD-RAN / SD-CORE

Blueprints for 5G, Al, Edge laaS/PaaS, loT

Telco Edge Marketplace; Aggregates enterprise and operator infrastructure on a global scale, harmonizing use

Powerful MANO tool targeting ETSI NFV, Telco environments e.g., 5G networks; focus on e2e services, slicing; works with **OpenStack & Kubernetes**

> Lightweight version (distro) of Kubernetes (different deployment architecture)

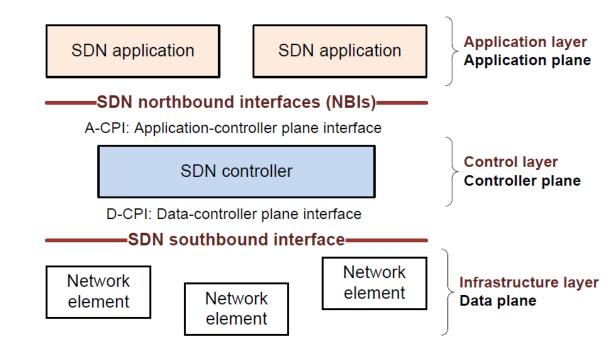
Micro-services based platform, focusing on Experimental; Lightweight; focuses on Telco Industrial IoT-Interoperability environments 4G/5G; ETSI MEC compliant; Integration w/ FlexRAN/OAI E D G E 🗶 F O U N D R Y **OpenNESS** Decentralized, generic platform for the edge. Pub/sub State LL-MEC NETWORK EDGE SERVICES SOFTWARE Mgmt: Resource Abstractions AKRAIND Rether FOG focuses on Telco Mobiledge IGHTEDGE **MEC** compliant E**⊳**GE NATIVI (彡 ioFog Open Source जूद KC KubeEdge Anthos ÉNGE \mathfrak{B} **OPEN**SHIFT **K3S kubernetes** Powerful cluster management Kubernetes. platform; Forms the basis for Lightweight version (distro) multiple Edge platforms of Kubernetes deployed on micro-DCs

Experimental; Lightweight; environments 4G/5G; ETSI

OpenSource distro of OpenShift (RedHat). Kubernetes distro; Focus on **DevOps and Multi-tenancy**

Google Application Mgmt Platform for distributed environments; Builds on

Key Technologies Network Programmability



Software Defined Networking

- Logically centralized control
- Stateless data plane (switches)
- Edge computing:
 - Enforce off-loading decisions: device, edge or cloud
 - Failsafe and load-balancing
 - Service migration support: restore connectivity

Data Plane Programmability

- Adding ability for local decision-making (switches)
- P4
- VNFs w/ DPDK, etc.

Athens Living Lab Ideathon - 10 October 2022

Acceleration

Key Technologies

- Virtualization and programmability come at a performance cost
 - COTS CPUs not suitable for network or AI/ML processing
- Edge computing characterized by limited processing capacity
 - Typically worse as we get closer to the user

- FPGAs (Field Programmable Gate Arrays)
 - Combine dedicated HW performance w/ SW flexibility
- GPUs (Graphics Processing Units)
 - Suitable for matrix operations (typical in AI/ML)
- TPUs (Tensor Processing Units) \rightarrow Google Coral Edge TPU
- VPUs (Vision Processing Units) \rightarrow Intel Neural Compute Stick

NVIDIA Jetson Nano 2GB Developer Kit

22

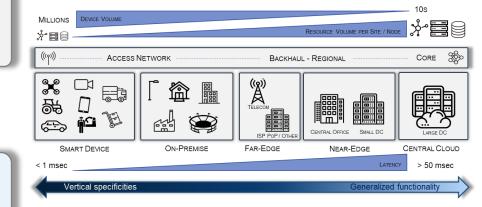
Corol

Challenges

- Extending the compute continuum
 - Making use of intermittent resources
- Mobility management in Edge computing
 - Service continuity
- Service Management and Orchestration: facing AI/ML pipelines
 - Energy
 - Accuracy
 - Privacy
- Hierarchical Inference
- Decentralization
 - Interoperability
 - Trust & Accountability

Challenges Extending the Compute Continuum

SOTA


• Lightweight virtualization and MANO e.g., Kubernetes/K3/Fog05

× Assumes stable connectivity, static topology

Beyond SOTA

- ✓ Asynchronous / event based MANO interfaces / APIs
 - Resource / Service discovery
 - Life-Cycle Management

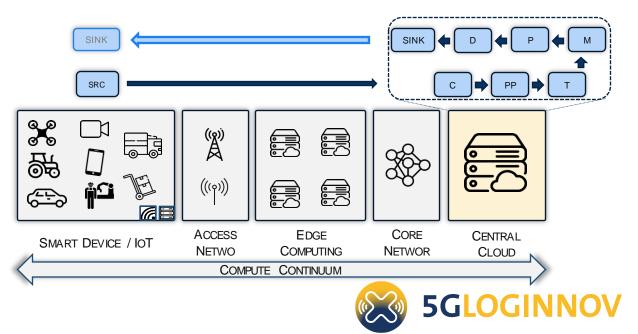
✓ Trust/accountability mechanisms

Initial model

Resources typically provisioned by service consumers (clients)....

MANO for AI/ML workloads on the Compute Continuum

SoTA: AI/ML pipelines typically:

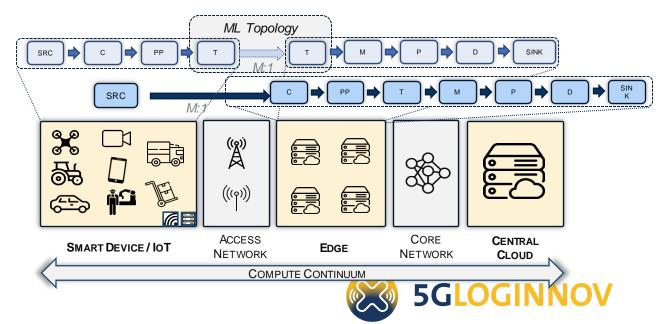

- Fully-centralized
- Static
- Reduced automation / manual
- One-off

× Big data overheads e.g., traffic, energy
 × Limited adaptation to resource demand availability dynamics
 × Privacy concerns
 × Non-continuous adaptation to evolving data

- SRC: source of data
- C: collector of data from one or more sources
- PP: preprocessing, cleaning, feature extraction
- T: model training
- M: machine learning model
- P: policy / rules for safeguarding
- D: distributor of M output to enforcement
- SINK: node taking action on M output

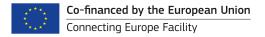
Adapted from: <u>Recommendation ITU-T Y.3172 (06/2019)</u> Architectural framework for machine learning in future networks including IMT-2020

MANO for AI/ML workloads on the Compute Continuum


Beyond SoTA: MANO framework

- Distributed
 - Smart Device-Edge-Cloud
- Dynamic/adaptive
 - Data availability
 - Resource Availability
 - Inference demand
- Automated
- SRC: source of data
- C: collector of data from one or more sources
- PP: preprocessing, cleaning, feature extraction
- T: model training
- M: machine learning model
- P: policy / rules for safeguarding
- D: distributor of M output to enforcement
- SINK: node taking action on M output

Adapted from: <u>Recommendation ITU-T Y.3172 (06/2019)</u> Architectural framework for machine learning in future networks including IMT-2020



- Efficient resource utilization
- Reduced latencies
- Privacy friendly
- Continuous adaptation to evolving data

Thank you! Questions?

Athens Living Lab Ideathon - 10 October 2022

k.katsaros@iccs.gr