

Athens Living Lab Ideathon Machine Vision : Artificial Intelligence, Machine Learning & Computer Vision Challenges

Institute of Communication and Computer Systems (ICCS)

10 October 2022

Georgios Drainakis Software Engineer, Researcher ISENSE Group / ICCS

Intro to Computer Vision

The field of study surrounding how computers see and understand digital images and videos **DeepAl**

0 0 0 1 0

Computer vs. o Machine vision

100000

The field that trains computers to interpret and understand the visual world **J.G. Shanahan, Berkeley**

Enables computers and systems to derive meaningful information from digital images, videos and other visual inputs IBM

AI/ML simplified

- Neurons: mathematical functions
- Weights: connections between neurons (numerical)
- **Prediction**: Y=X^TW
- Loss function: Comparison metric between prediction and grown truth
- **Deep Learning**: Like simple ML but Model is chaotically big
- Gradient Descent: Optimization algorithm to find the minimum of the loss function
- Training: The process of feeding the ML model with data to allow the learning algorithm to "learn" data patterns (by adjusting the weights)
- Inference: The process of running new (live) data into a trained ML model and calculate output aka prediction

Neural Network (NN) Model

[Kolmogorov,1957] A continuous multivariate function can be expressed on a compact set in terms of sums and compositions of a finite number of single variable functions.

AI/ML & Computer Vision Convergence

Demo: Digit Recognition (1)

- Dataset: MNIST, Gray-scale digits 0-9
- ML Model: CNN (2 convolutional+2 linear layers)
- Tuning: Learning rate=0.001, Training epochs=10
- Image processing: Blurring factor (bf) of Gaussian Noise

Convolutional Neural Network

Demo: Digit Recognition (2)

bf=0

Truth

Prediction

NN score: 98%

Demo: Digit Recognition (3)

Truth	7	1	7	1	6
Prediction	7	1	7	1	6

Truth	6	5	3	7	6
Prediction	6	5	3	7	6

NN score: 97%

Demo: Digit Recognition (4)

Athens Living Lab Ideathon - 10 October 2022

Computer vision apps: ITS

Vehicle & pedestrian detection

Lane detection

Traffic sign recognition

Key Requirements

- Accuracy
- Minimal delays
- ML Model personalization

Computer vision apps: Medical

Skin cancer detection

X-ray analysis e.g. COVID detection

Surgical robotics

Key Requirements

- Accuracy
- Precision & Recall i.e., no false-positives/negatives
- ✓ Data privacy

Computer vision apps: Industrial IoT

Defect detection

Inventory management

Material sorting

Key Requirements

- Accuracy
- Minimal delays
- Processing-light ML tasks (if running on embedded devices)
- Energy-aware ML

Computer vision challenges

DATA SHORTAGE

- Inadequate data quantity
- Restrictions due to privacy
- Low-quality data e.g. shades

BLACK-BOX AI

- No existing theory on AI/ML
- No convergence guarantees
 - Works only by trial and error (resultoriented)
- Based on existing practical guidelines/rules

MANUAL LABELLING

- Requires human interference
- Long process
- Prone to errors

PROCESSING CAPACITY

- Heavy ML models for HD images, videos, etc. usually require GPUs Most ML tasks can be only performed in High Availability Data Centers

OVER-FITTING

- ML model is trained but cannot generalize over new data
- Requires analysis of ML algorithm, parameters, etc.

ENERGY COSTS

GPU operations inflict major energy expenditure

Future Directions: a glimpse

Athens Living Lab Ideathon - 10 October 2022

Thank you! Questions?

Connecting Europe Facility

Athens Living Lab Ideathon - 10 October 2022