
1

On the distribution of ML workloads to the network
edge and beyond

Georgios Drainakis∗, Panagiotis Pantazopoulos†, Konstantinos V. Katsaros‡, Vasilis Sourlas§, Angelos Amditis¶

Institute of Communication and Computer Systems (ICCS), Athens, Greece
Email: ∗giorgos.drainakis@iccs.gr, †ppantaz@iccs.gr, ‡k.katsaros@iccs.gr, §v.sourlas@iccs.gr, ¶a.amditis@iccs.gr

Abstract—The emerging paradigm of edge computing has
revolutionized network applications, delivering computational
power closer to the end-user. Consequently, Machine Learning
(ML) tasks, typically performed in a data centre (Centralized
Learning - CL), can now be offloaded to the edge (Edge Learning
- EL) or mobile devices (Federated Learning - FL). While
the inherent flexibility of such distributed schemes has drawn
considerable attention, a thorough investigation on their resource
consumption footprint is still missing.

In our work, we consider a FL scheme and two EL variants,
representing varying proximity to the end users (data sources)
and corresponding levels of workload distribution across the
network; namely Access Edge Learning (AEL), where edge nodes
are essentially co-located with the basestations and Regional
Edge Learning (REL), where they lie towards the network core.
Based on real systems’ measurements and user mobility traces,
we devise a realistic simulation model to evaluate and compare
the performance of the considered ML schemes under an image
classification task. Our results indicate that FL and EL can act as
viable alternatives to CL. Edge learning effectiveness is shaped
by the configuration of edge nodes in the network with REL
achieving the prominent combination of accuracy and bandwidth
needs. Energy-wise, edge learning is shown to offer an attractive
choice (for involved stakeholders) to offload centralised ML tasks.

I. INTRODUCTION

The unprecedented surplus of data supplied by a variety
of mobile devices (smartphones, smart sensors, wearables),
supplemented by ML-specific hardware acceleration has con-
tributed to a proliferation of ML techniques in order to
capitalize on the information richness and therefore develop
intelligent network applications. From virtual reality [1] to
video analytics [2], ML has led to an era of data-driven appli-
cation development. While the current ML paradigm remains
centralized (CL) in nature i.e., tons of data are accumulated
in a resourceful central entity e.g., in a data-centre (DC)
where the training occurs, the emergence of edge computing
has changed the scene, providing new opportunities, such as
computational load distribution towards the edge (EL). At
the same time, privacy concerns have even lead to UE-based
ML schemes, like Federated Learning (FL), where the devices
perform the training themselves.

To facilitate efficient distributed learning over the network,
in favor of the involved stakeholders interests (end-user, net-
work operator, cloud/edge provider), a distributed ML scheme
is required to optimize the ML performance (convergence
speed, accuracy) subject to constraints related to resource
consumption (bandwidth, energy) and environmental factors
(device computational heterogeneity, client mobility patterns).

In relation to the traditional approach of CL, two key points
emerge: 1) What are the prons and cons of each ML scheme
in relation to the traditional approach of CL in terms of
performance vs. its respective resource consumption and 2)
Depending on the workload distribution scheme, the associated
costs, such as energy, are also distributed accordingly to the
various network stakeholders and we lack an understanding of
how this happens.

These questions have so far been addressed in a limited
way. While prior work was focused on exploring the conver-
gence capabilities of decentralized ML as in [3], where the
theoretical bounds of distributed Stochastic Gradient Descent
algorithm are compared against its centralized alternative, the
effect of such implementations on the underlying network’s
resources is still missing. This also holds for emerging works
that have introduced edge-based learning as an alternative
to CL. In [4] the convergence rate of EL is studied and a
control algorithm is designed to optimize the ML algorithm’s
performance, approximating that of its centralized counterpart.
In [5] an edge-based algorithm is discussed to mitigate the
performance loss of distributed ML, while in [6] an edge-
based scheme is developed to reduce communication cost and
increase convergence speed. On the other hand, research on
FL-based schemes has provided some insights on the param-
eters that affect performance as well as the involved trade-
offs, such as ML accuracy in relation to the communication
costs [7], the effect of reliability [8] and accuracy (jointly) with
fairness [9]. Nevertheless, an across the network parameter
analysis when implementing the various ML schemes has not
been performed yet.

In order to bridge this gap, we propose a system model that
incorporates the cloud elements, the core network’s infrastruc-
ture, the edge network’s devices and the UEs, along with their
throughput, computational capacity and energy consumption
characteristics. The latter are taken from measurements in
practical systems, to ensure realism. Moreover, the model
accounts for the effect of client mobility, which is captured by
mobility traces. Using our proposed model we study the per-
formance of three basic ML schemes; namely CL, FL and EL.
Addressing different degrees of load distribution/aggregation
we further differentiate EL into two variants; AEL, where
the edge nodes are attached to a network cell and REL,
where each edge node serves multiple cells. Using a FL-
simulation framework we compare the resulted classification
accuracy and convergence speed of the schemes, along with
their respective resource consumption in terms of system

2

bandwidth and energy. On top of that, we estimate how this
consumption’s costs are divided into the system’s stakeholders,
revealing the benefits of each scheme and exploring the trade-
offs that emerge. This work extends our previous research [10]
on the CL-FL debate, introducing EL as an alternative ML
scheme, revisiting the network and energy model to support
edge nodes and extending the per-stakeholder cost analysis.

In our results, REL is proven as a more efficient CL-
alternative than AEL, in terms of achieved accuracy vs. traffic.
FL shows a potential for reduced communication overhead,
at a cost of slower convergence and increased energy con-
sumption, mainly caused by the mobile devices’ processing.
Lastly, EL exhibits the highest energy efficiency system-wise,
reducing energy costs up to 4 times both for the end-user and
the cloud. The remainder of the paper is structured as follows.
In Section II we analyze our system model. In Section III,
our simulation results are provided. Lastly, we conclude in
Section IV pointing also to future explorations.

II. SYSTEM MODEL

In our model, a cellular network environment is assumed
comprising several mobile clients, each holding an amount
of training data. In each cell, a wireless link connects the
clients with the basestation unit (BS). Also, BSs are able to
communicate with the edge nodes and with a central data
centre (DC) cloud server, via the intermediate core (wired)
network (Fig. 1). The system’s aims to perform a ML task,
utilizing available client data1 through the following schemes:

CL: In each training round the server selects a group of
clients; they upload their data directly to the server. The
training task is thereafter performed centrally by the server
using the total data acquired in that round. This process repeats
for several rounds, each time with a selection of a random
group of clients, until a predefined time limit is reached or all
data are depleted.

FL: The server communicates the training model to the
selected clients (learners), which in turn are responsible to
train it using their own (private) data and computing resources.
As opposed to CL, they no longer require to upload their
actual data. Instead, once the training is completed, they com-
municate the updated model parameters, which are generally
considerably lightweight compared to the actual data, to the
central server. Upon collecting the updated model parameters,
the server performs model aggregation and (re)-distributes the
updated (aggregated) model to a different group of clients.

EL: This approach functions as a middle-ground solution
between CL and FL, where the edge nodes act as learners. In
each round, each edge node receives the central model from
the central server and the data from the clients in its service
area. Thereafter, the models are trained and the respective
model parameters are sent to the central server, which in turn
performs the aggregation (similarly to the FL case).

A. Network model
We assume a mobile Long-Term Evolution (LTE) cellular

network where a BS lies in the centre of each cell. We refer
1Without harming the model’s accuracy, control and management plane’s

messages e.g., signalling are neglected, given their negligible size

Fig. 1. From the mobile user to the cloud: end-to-end logical network diagram

to the wireless part of the network (BS-client link) as access
network, while the wired part (BS-edge-cloud link) comprises
the core network (Fig. 1). We assume two distinctive cases
for EL depending on the network’s architecture; Access Edge
Learning (AEL), where each edge node serves a specific cell,
thus attached to the cell’s BS and Regional Edge Learning
(REL), a more appealing in practical installation terms, where
few edge nodes serve the whole network.

Access network: The client throughput (') in both the uplink
(UL) and the downlink (DL) (in MBytes/sec) is modelled as
a Gaussian random variable (Ñ). Its mean value is assumed
equal to the average cell throughput2 �, divided by the number
of online clients. Including the number of online clients in the
computation, allows to factor-in the way the locally-present
number of users shapes the throughput provision in the con-
sidered area. An artificial standard deviation parameter (sigma)
is also introduced, equal to 20% of the mean value [12], to
account for throughput variations e.g., due to path loss. Given
that a client is online, however, its throughput value should
be forced to be positive, since some BS-client communication
exists. We therefore assume a minimum throughput threshold
(�<8=), both in DL and in UL. �<8= is assumed equal to
the 5% cell edge rate3, which represents the worst wireless
conditions. Thus, the client throughput for UL and DL, is:

' = <0G{#̃ (�

‖ $ ‖
, B86<0), �<8=} (1)

where ‖.‖ is a vector’s norm, $ the number of online clients.
Core network: It typically includes the following ele-

ments [13]: 1) An interface to the access network (BS); 2)
The metro and edge network’s elements, i.e., an ethernet
switch, a broadband network gateway (BNG) and the edge
router; 3) the backbone network’s routers and 4) the DC’s
elements, i.e., an edge router and a data center switch.
The average throughput of each element is based on Cisco
routers/switches performance benchmarking [13] and mea-
surements on a 3-sector 2×2 Multiple-Input-Multiple-Output
remote radio 4G/LTE [13]. A total number of 3 core routers
is considered, in line with [14], which shows that a hopcount
of maximum 3 in the core network suffices to reach the DC
(from the edge network) for the majority of popular services.

For the CL and FL case, no edge nodes are utilized,
therefore are not considered in the network model. In AEL,

2That is, 5.9 (UL)/7.73 (DL) MBytes/sec for 2.5 GHz LTE according to [11]
3That is, 0.24 (UL)/0.22 (DL) MBytes/sec according to [11]

3

edge nodes are assumed attached to the BSs via an ethernet
connection. Essentially, the total number of edge nodes equals
that of the BSs. Each edge node serves its BS thus no cell
aggregation occurs. For REL, on the other hand, a certain level
of cell aggregation is assumed, since edge nodes serve multiple
BSs. We assume that 3 Regional Edge Nodes in total, attached
to the BNG, sufficiently cover the area of our experiments.

B. Mobility model

Real-world traces were selected to capture clients’ mobility
in a realistic manner. In specific, the Shanghai Telecom
Dataset [15] was used, which contains records (LTE traces) of
mobile devices accessing the Internet through a BS in a period
of 15 days. The database includes timestamps (taken every
minute, which is the dataset’s time granularity) for connection
initialization and termination marking the clients’ online pres-
ence. Clients are considered online as long as they remain in
the network. A cell in the dataset in defined by its correspond-
ing BS’s coordinates; totally, 1853 cells are included. During
the BS-client communication, if the client moves to another
cell i.e., serviced by another BS, we assume that a handover
(HO) occurs, during which, communication is not disrupted.
A change of cell, however, may affect client throughput in line
with the cell’s congestion (see paragraph II-A).

In an actual network, the identification of the edge node
locations would ideally be the outcome of a facility location
problem, accounting for various factors i.e., spatial charac-
teristics, cellular architecture, average user demand etc. As
our baseline approach, a uniform distribution of cells across
the edge nodes is considered. Although non-realistic, it is
insightful as it reduces the involved problem parameters. A
more skewed distribution is left for future work.

C. Client selection model

We now detail the employed client selection algorithm.
The training dataset, including data and labels, is firstly
shuffled and then uniformly divided into / partitions. Then,
a fixed number of per round participating clients # is
chosen (#</). In each communication round, the server
identifies all online clients ($), which are determined by
the mobility dataset. A total of # clients are randomly
chosen to participate in this round and each one is assigned
a dataset partition. Partitions that have already been used are
not reassigned. If there are not enough online clients present,
to reach # in number, all currently online clients are chosen.
In case no clients are found, a waiting period is introduced,
equal to the mobility dataset granularity (60 sec). In case the
algorithm selects a previously chosen client, a (new) dataset
partition is still assigned. This is a valid assumption for most
applications, considering that the client has a continuous data
acquisition rate, e.g., a vehicle gathering traffic-scene photos.

Upon partition assignment, the training procedure takes
places. In the CL case, the selected clients upload their
local datasets to the central server in a parallel manner.
The time required for each upload is simply modelled as
)8<4 =

∑
)8 =

∑
�0C0B4C/'8 , for all (access and core)

network components (8), where ' denotes the component’s

throughput. The time to upload all datasets equals to that of
the "slowest" client, since a parallel transmission is assumed.
The central server, thereafter merges the datasets into a single
super-dataset and performs the ML training task, marking the
end of the round. This procedure is repeated until a global time
limit is reached or all datasets are used. In case a client goes
offline during upload (irrespective of the upload completion
percentage), we define a communication failure. If such a
failure occurs, the client’s contribution is neglected by the
central server. However, to account for the time and resources
spent for the (partial) communication, we consider a delay
time equal to the estimated upload time assuming the worst-
case scenario of losing the connection when the data upload is
almost finished. The estimated upload time can be calculated,
given our constant throughput model described in Eq. (1) and
the a-priori known per-client dataset size.

Same settings overall apply to the FL case. Here, the central
server first shares the training model to the clients. Then, each
client trains the model using only its available (local) data and
finally uploads the updated model back to the server, again in a
parallel manner. The server is the one to perform aggregation
of all the collected models. In FL, a communication failure
may also occur during the period the server shares the training
model (downlink). In EL, each participating client uploads its
data to its serving edge node; the latter has already received
the training model from the central server and then the training
process occurs per edge node. Subsequently, updated models
are sent back to the central server, similar to the FL case.

D. UE and Servers’ Computational Capacity

User equipment: The computational capacity of a mobile
device to perform a ML task, measured in (processed) training
samples/sec depends on the dataset content e.g., images pose
different requirements than natural language, the user equip-
ment’s (UE) capabilities and the training model’s complexity.
A good approximation for popular large-scale classification
tasks can however be deducted from [16] since different
models have been tested in various configurations. For our
case, we use a reference (average) value of 125 training
samples/sec, as the most appropriate for our training dataset
and model.

Edge nodes: Edge node characteristics have not been final-
ized yet, given that they are not fully deployed in practical
systems. We have therefore considered as our main reference
the latest commercial solutions specified by Amazon’s AWS
Wavelength services [17]. It offers cloud services specialized
for ML (Amazon EC2 P3 instances) and is equipped with an
NVIDIA Tesla V100 Graphics Processing Unit (GPU). GPU
computational capacity values for ML can be found in [18],
where we select an average value of 6000 training samples/sec.

Cloud server: The computational tasks for the cloud server
include training (in the CL case) and model parameter aggre-
gation (FL, EL cases). For the former, similar to the edge node
modelling, we are based on [18]. We select an average value of
40,000 training samples/sec, assuming a DC is equipped with a
Tensor Processing Unit (TPU), as opposed to GPU for the edge
server. For the latter, no reference values can be found in the

4

literature, thus we rely on an empirical approach; we measure
the average capacity for training and aggregation tasks in our
personal computer (PC) setup (i.e., 6250 training samples/sec
and 1.56 model aggregations/sec respectively) and compare
against the training capacity reference value of 40,000 training
samples/sec that was selected, according to [18]. Assuming
a linear relation, the average cloud aggregation capacity is
calculated as 10 model aggregations/sec.

E. Energy Consumption
User equipment: In this study, the energy expenditure oc-

curred as a result of a UE’s standard operation e.g., displaying
is not considered. Instead, we focus on expenditure due to
data transmission (TX) or reception (RX) and training (ML)
related tasks. Thus, the energy consumption �8 i.e., battery dis-
charge of the 8Cℎ device is computed as: �8=�) -8 +�'-

8
+�"!

8
,

where the superscript TX, RX and ML marks one of the
aforementioned functions. In a given time period C, this can
be calculated as � i = %i ∗ C, where %8 stands for the
respective (average) power consumption. For LTE, average
power consumption values related to transmission are reported
in [19], where %) -

8
=2.2 Watts and %'-

8
=1.5 Watts. Likewise,

for ML, based on [16], we assume P"!8 =2 Watts, as the
most appropriate to our model and SVHN training tasks (see
paragraph II-F). The sum of all device energies (�8) comprises
the total client energy expenditure.

Edge nodes: For edge devices, energy is consumed only in
the EL case, due to ML training. Given a specific number
of dataset samples, its training time CCA08= is calculated using
the computational capacity values from paragraph II-D. The
respective energy expenditure is given by �4364 = CCA08= ∗
%4364, where %4364 stands for the average power consumption
for training. Using [20] for CPU-GPU power benchmarking,
we obtain an average value of 50 Watts for %4364.

Network devices: Energy consumption in the core network
is calculated by summing the energy consumption of core
network devices (routers, gateways, switches, interfaces to Ac-
cess/Cloud), which are given by [13] (as averages in Joules/bit)
in relation to the data exchanged in the UL/DL streams.

Cloud server: Similar to the edge nodes, the computational
capacity values of cloud tasks (training and aggregation) are
discussed in paragraph II-D. Energy expenditure per task can
thus be calculated4, given an average power expenditure. For
the training task (CL), being an intensive processing task, we
assume an average power of 384 Watts, based on Google’s
TPU benchmarking [21]. For the (less-intensive) aggregation
task (FL, EL) we assume an average value of 15 Watts, based
on measurements for matrix multiplication tasks [22], which
are similar in complexity to weighted averaging (aggregation).

F. Machine Learning
We have selected an image-classification problem, as a

representative ML task and in specific digit recognition from

4An end-to-end ML-related service should also account for time and re-
sources spent due to inference i.e., applying the trained model on active (new)
data to extract an output. Our work though, focuses on the computational-
heavy and network-challenging ML training process (and not the inference
task that might as well be realised as a stand-alone task, much later in time)

given images taken from the Street View House Numbers
(SVHN) dataset. SVHN, which is widely used in bibliography
e.g., [23], is based on a set of real-world images, with digits
taken from natural scenes (house numbers in Google Street
View). It contains a training dataset of 531K 32x32 colour
training images (of 1.3 GB size) split in 10 classes (for
digits 0-9) and a test dataset of 26K test images. The original
SVHN training dataset is replicated 10 times, adding a random
Gaussian noise factor (blurring) #̃ (0, 0.02) to the images
vectors, essentially resulting in a total synthetic 13GB dataset.

A neural network was developed to address the above-
mentioned task, comprised of an input layer of 3072 neurons,
which correspond to the total pixels of the input SVHN
images (32x32x3), an output layer of 10 neurons, equal to
the total output classes of SVHN and a hidden layer of 512
neurons. Rectified Linear Unit (ReLU) activation is applied on
the hidden linear layer (ReLU functions as a filter, allowing
only positive values to pass through), while on the output
layer LogSoftmax activation [24] is selected, being more
effective for N-element classification tasks. Regarding hyper-
parameter settings, a batch size of 64 samples was chosen,
along with a learning rate of 0.1, based on the default settings
for similar image classification tasks in PySyft library [25].
The total model size reaches 6.1 MB5. Federated Averaging
(FedAvg [26]) algorithm is used in all distributed learning
cases in our PySyft implementation [25].

III. EXPERIMENTAL EVALUATION

For the simulation, the PySyft distributed learning environ-
ment [25] was used in a desktop machine with the following
characteristics: Intel Core i7-10700 CPU @ 2.9 GHz, 16 GB
RAM. The synthetic training dataset in divided into / equal-
sized partitions. We have chosen two key scenarios, based on
our previous work [10]; 1) / = 1000, accounting for a per
client data to model ratio A=2.1, where CL and FL are under
an equal data exchange and 2) / = 250 (A=8.5), as a more
realistic case for ML applications, where each client holds
considerably larger amounts of data than the ML model. Per
round partipants (#) is fixed to 50. For each scenario, we
consider 5 2-hr samples from the mobility dataset, where the
predefined time limit is also set to 2hr. For each sample we
test the various ML schemes (CL, FL, AEL, REL), essentially
resulting in a total of 40 experiments.

To evaluate the performance of each scheme the following
metrics are considered: 1) Testing Accuracy, representing
the ratio (%) of successful to total classifications. 2) Traffic
Volume, calculated as the sum of total data exchanged between
the central server and the clients (FL, CL) or between the
central server, the edges and the clients (AEL, REL). For
the sake of clear representation, traffic volume is normalized
to the total training dataset size (i.e., 13 GB). 3) Energy
consumption, measured as the total energy expenditure due to
processing (training, model aggregation) and data transmission
(see section II-E) for the various network’s components.

5Using larger model sizes (up to hundreds of MBs) such as multi-layer
convolutional neural networks is feasible but would face practical limitations
e.g., disk capacity in a considerable number of modern UEs; it would affect
users’ willingness to participate in the training and limit our system’s realism.

5

Accuracy and amount of exchanged data: In terms of the
resulted accuracy (i.e., at the end of training), for the first
scenario (A=2.1), REL exhibits similar performance to CL,
while AEL equals that of FL (Fig. 2). Also, it is shown that
both CL and REL outperform AEL and FL, respectively, by
an average value of 8%. Intuitively, the above observations
match the expectation of AEL achieving the same accuracy as
FL (i.e., in the former case, training just takes place closer
to the cloud compared to the later) while REL exhibiting
a behavior close to CL (i.e., in both cases large amounts
of data are gathered centrally and used for training). When
client data scales (A=8.5) similar behavior is observed (Fig. 3)
regarding the resulted accuracy of the considered approaches,
with the (AEL,FL- REL,CL) pairwise gap reducing (up) to 5%.
Regarding the bandwidth expenditure, under A=2.1 FL and CL
(shown already in [10] to exchange similar data for this ratio)
together with REL, converge to 100% (Fig. 4). REL slightly
exceeds 100% since apart from all the available data uploaded
to the edge servers, the (lightweight) model parameters and
aggregated result are exchanges with the cloud server. AEL, on
the other hand consumes twice the amount of data, stemming
from the fact that numerous edge nodes send/receive model
parameters to/from the cloud server. When large amounts of
data are available (i.e., A reaches 8.5), REL-CL exhibit similar
performance as before, while both FL and AEL mark a 80%
reduction (Fig. 5), since less clients (therefore less models)
are participating totally. Still, the total expenditure for AEL
is 20% greater than CL-REL; given a fixed total dataset size,
larger values of A will further decrease the total client number,
thus this difference is expected to be minimized.

Fig. 2. Testing accuracy for different approaches across time (A = 2.1)

Fig. 3. Testing accuracy for different approaches across time (A = 8.5)

Consequently it is shown, that for REL the trade-off be-
tween exchanged data and achieved accuracy follows the
behavior of CL. REL thus, stems as a viable solution to ML
workloads offloading. On the contrary, AEL fails to achieve
CL’s accuracy levels, whilst consuming more data; therefore

is not recommended for ML-related applications, even if a
choice of placing edge nodes close to the base station is widely
adopted (in the future). In the latter case, ML tasks and relevant
infrastructure i.e., GPUs appear more efficient when moved
to a regional level. Going beyond the edge, FL appears as
a viable alternative to CL, especially relying on its reduced
communication costs for large A values.

Fig. 4. Exchanged data ratio for different approaches across time (A = 2.1)

Fig. 5. Exchanged data ratio for different approaches across time (A = 8.5)

Behavior in the course of time: From the viewpoint of
convergence speed, CL and REL are able to reach their peak
performance during the first training rounds (at 200 secs).
At this stage, they outperform AEL by 15% and FL by
21% for A=2.1 (Fig. 2) and by 14% and 18% for A=8.5
(Fig. 3), respectively. The slow accuracy improvement of FL
compared to other schemes is mainly dictated by the low
processing capacity of the mobile devices, as opposed to a
GPU in the edges (AEL-REL) or TPU in the cloud (CL). The
faster convergence of CL-REL comes at a cost in bandwidth
expenditure. In specific, for A=2.1 REL (at 200 secs) requires
2.5 times more data (for CL that is almost 4) as compared
to FL. For A=8.5 these values are 2 and 3, respectively. Fast
convergence however, may imply (financial) gains in view of
the per-hour cost for edge resources usage [17]. Finally, AEL
utilizes more data than any other scheme.

Fig. 6. Total energy consumed
(r=2.1)

Fig. 7. Total energy consumed
(r=8.5)

Energy expenditure: The overall energy consumption for
each scheme is depicted in Fig. 6-7. FL achieves the worst
performance, consuming 60% (A=2.1) and 32% (A=8.5) more
energy overall, as compared to CL. As shown in Fig. 6-7,
energy expenditure due to processing (UE training) governs
this behavior for FL. A reduced transmission of data for A=8.5,

6

Fig. 8. Stakeholders energy cost
(r=2.1)

Fig. 9. Stakeholders energy cost
(r=8.5)

comes hand to hand with a respective energy reduction. For
A=2.1, AEL’s energy performance is similar to that of CL,
while REL is 8% more efficient. For A=8.5 both edge-based
schemes exhibit this 8% efficiency. Regardless the ratio and
the scheme, the energy costs of processing surpass that of
transmission by at least 2 times.

Considering energy consumption from a stakeholder stand-
point (Fig. 8-9), we deduct that the user enjoys a reduction
factor of 80% for both ratios, if an edge (REL, AEL) or
centralised (CL) learning approach is used (instead of FL).
From the cloud’s perspective, any scheme would reduce energy
costs by at least 85% as compared to CL for A=2.1, while for
A=8.5 non-CL schemes minimize cloud’s energy consumption.
Assuming the network operator is only in charge of the
network devices, its energy consumption accounts for 5%
of the total energy consumption regardless the ML scheme.
Finally, in case the cloud provider offers edge computing
services, a welcome 13% reduction appears (for A=8.5) if CL
learning tasks are offloaded either to AEL or REL.

IV. CONCLUSIONS

In this work, we have introduced two variants of edge-
based ML (EL), accounting for the case where an edge-node
is attached to a basestation (AEL) or is associated with a
region of multiple cells (REL) respectively. Together with FL,
EL schemes were implemented and drawing on our cloud-to-
UE system model for the underlying network resources, we
compared the distributed schemes against the traditional CL.
Our simulations, capturing ML accuracy/convergence speed
subject to bandwidth and energy constraints, suggest that
unlike AEL, REL exhibits similar performance to CL, thus,
it emerges as a prominent edge learning approach. Beyond
the edge, FL (given adequate per client data) enjoys reduced
communication costs, despite being the least energy-efficient
scheme system-wise, mainly due to processing needs.

Our results point to multiple future work threads; an in-
vestigation of non-uniform distribution of cells across the
edge nodes (clustering) and its impact on the edge learning
performance is one key direction. Another is the exhaustive
exploration of performance-resources trade offs as the edge
learning functionality moves hop-by-hop closer to the cloud.
Finally, the (currently) linear model for the UE/edge/cloud
energy consumption and processing capacity can be extended.

ACKNOWLEDGEMENTS

This paper is part of the 5G-LOGINNOV project, co-
funded by the EU under the H2020 Research and Innovation
Programme (grant agreement No 957400).

REFERENCES

[1] J. Pfeiffer, T. Pfeiffer, M. Meißner, and E. Weiß, “Eye-tracking-based
classification of information search behavior using machine learning:
evidence from experiments in physical shops and virtual reality shopping
environments,” Information Systems Research, 2020.

[2] X. Ran et al., “Deepdecision: A mobile deep learning framework for
edge video analytics,” in IEEE Conference on Computer Communica-
tions (INFOCOM), 2018, pp. 1421–1429.

[3] X. Lian et al., “Can decentralized algorithms outperform centralized
algorithms? a case study for decentralized parallel stochastic gradient
descent,” in Advances in Neural Information Processing Systems, 2017,
pp. 5330–5340.

[4] S. Wang et al., “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” in IEEE Conference
on Computer Communications (INFOCOM), 2018, pp. 63–71.

[5] Z. Tao and Q. Li, “eSGD: Communication efficient distributed deep
learning on the edge,” in {USENIX} Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

[6] Y. Huang et al., “When deep learning meets edge computing,” in 2017
IEEE 25th Intern’l Conference on Network Protocols (ICNP), pp. 1–2.

[7] Y. M. Saputra et al., “Energy demand prediction with federated learning
for electric vehicle networks,” in 2019 IEEE Global Communications
Conference (GLOBECOM), 2019, pp. 1–6.

[8] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated
learning for ultra-reliable low-latency v2v communications,” in 2018
IEEE Global Communications Conference (GLOBECOM), pp. 1–7.

[9] M. M. Wadu, S. Samarakoon, and M. Bennis, “Federated learning under
channel uncertainty: Joint client scheduling and resource allocation,”
arXiv preprint arXiv:2002.00802, 2020.

[10] G. Drainakis et al., “Federated vs. centralized machine learning under
privacy-elastic users: A comparative analysis,” in IEEE 19th Intern’l
Symposium on Network Computing and Applications, 2020, pp. 1–8.

[11] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE Journal on Selected Areas in Communica-
tions, vol. 32, no. 6, pp. 1164–1179, 2014.

[12] M. Rizwan and S. A. Abbas, “Median path loss, fading and coverage
comparison at 3.5GHz and 700Mhz for mobile WiMax,” in IEEE
International Multitopic Conference, 2008, pp. 266–271.

[13] A. Vishwanath et al., “Energy consumption comparison of interactive
cloud-based and local applications,” IEEE Journal on Selected Areas in
Communications, vol. 33, no. 4, pp. 616–626, 2015.

[14] Y.-C. Chiu et al., “Are we one hop away from a better internet?” in
Procs. of the 2015 Internet Measurement Conference, pp. 523–529.

[15] S. Wang et al., “Edge server placement in mobile edge computing,”
Journal of Parallel and Distributed Computing, vol. 127, 2019.

[16] J. Liu, J. Liu, W. Du, and D. Li, “Performance analysis and characteri-
zation of training deep learning models on mobile device,” in 25th IEEE
Intern’l Conf. on Parallel and Distributed Systems, 2019, pp. 506–515.

[17] Amazon AWS Wavelength - EC2 instance types. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/

[18] Y. Kochura et al., “Batch size influence on performance of graphic
and tensor processing units during training and inference phases,”
in International Conference on Computer Science, Engineering and
Education Applications. Springer, 2019, pp. 658–668.

[19] A. Nika et al., “Energy and performance of smartphone radio bundling
in outdoor environments,” in Proceedings of the 24th International
Conference on World Wide Web, 2015, pp. 809–819.

[20] D. Li et al., “Evaluating the energy efficiency of deep convolutional
neural networks on CPUs and GPUs,” in IEEE Intern’l Conference on
Big Data and Cloud Computing, 2016, pp. 477–484.

[21] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017, pp. 1–12.

[22] T. Jakobs, M. Hofmann, and G. Rünger, “Reducing the power consump-
tion of matrix multiplications by vectorization,” in IEEE Int’l Conference
on Computational Science and Engineering (CSE), 2016, pp. 213–220.

[23] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised deep
learning results,” in Advances in neural information processing systems,
2017, pp. 1195–1204.

[24] PyTorch Neural Network API. [Online]. Available:
https://pytorch.org/docs/stable/nn.html

[25] T. Ryffel et al., “A generic framework for privacy preserving deep
learning,” arXiv preprint arXiv:1811.04017, 2018.

[26] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Artificial Intelligence and Statistics, 2017,
pp. 1273–1282.

